A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are ...A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.展开更多
A hyperbolic conservation equation can easily generate strong discontinuous solutions such as shock waves and contact discontinuity.By introducing the arc-length parameter,the pseudo arc-length method(PALM)smoothens t...A hyperbolic conservation equation can easily generate strong discontinuous solutions such as shock waves and contact discontinuity.By introducing the arc-length parameter,the pseudo arc-length method(PALM)smoothens the discontinuous solution in the arc-length space.This in turn weakens the singularity of the equation.To avoid constructing a high-order scheme directly in the deformed physical space,the entire calculation process is conducted in a uniform orthogonal arc-length space.Furthermore,to ensure the stability of the equation,the time step is reduced by limiting the moving speed of the mesh.Given that the calculation does not involve the interpolation process of physical quantities after the mesh moves,it maintains a high computational efficiency.The numerical examples show that the algorithm can effectively reduce numerical oscillations while maintaining excellent characteristics such as high precision and high resolution.展开更多
In this paper,we will develop a first order and a second order convex splitting,and a first order linear energy stable fully discrete local discontinuous Galerkin(LDG)methods for the modified phase field crystal(MPFC)...In this paper,we will develop a first order and a second order convex splitting,and a first order linear energy stable fully discrete local discontinuous Galerkin(LDG)methods for the modified phase field crystal(MPFC)equation.In which,the first order linear scheme is based on the invariant energy quadratization approach.The MPFC equation is a damped wave equation,and to preserve an energy stability,it is necessary to introduce a pseudo energy,which all increase the difficulty of constructing numerical methods comparing with the phase field crystal(PFC)equation.Due to the severe time step restriction of explicit timemarchingmethods,we introduce the first order and second order semi-implicit schemes,which are proved to be unconditionally energy stable.In order to improve the temporal accuracy,the semi-implicit spectral deferred correction(SDC)method combining with the first order convex splitting scheme is employed.Numerical simulations of the MPFC equation always need long time to reach steady state,and then adaptive time-stepping method is necessary and of paramount importance.The schemes at the implicit time level are linear or nonlinear and we solve them by multigrid solver.Numerical experiments of the accuracy and long time simulations are presented demonstrating the capability and efficiency of the proposed methods,and the effectiveness of the adaptive time-stepping strategy.展开更多
基金supported by the National Natural Science Foundation of China(11390363 and 11172041)Beijing Higher Education Young Elite Teacher Project(YETP1190)
文摘A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.
基金Project supported by the National Natural Science Foundation of China(Nos.11822203 and 12032006)
文摘A hyperbolic conservation equation can easily generate strong discontinuous solutions such as shock waves and contact discontinuity.By introducing the arc-length parameter,the pseudo arc-length method(PALM)smoothens the discontinuous solution in the arc-length space.This in turn weakens the singularity of the equation.To avoid constructing a high-order scheme directly in the deformed physical space,the entire calculation process is conducted in a uniform orthogonal arc-length space.Furthermore,to ensure the stability of the equation,the time step is reduced by limiting the moving speed of the mesh.Given that the calculation does not involve the interpolation process of physical quantities after the mesh moves,it maintains a high computational efficiency.The numerical examples show that the algorithm can effectively reduce numerical oscillations while maintaining excellent characteristics such as high precision and high resolution.
基金Research of R.Guo is supported by NSFC grant No.11601490Research of Y.Xu is supported by NSFC grant No.11371342,11626253,91630207.
文摘In this paper,we will develop a first order and a second order convex splitting,and a first order linear energy stable fully discrete local discontinuous Galerkin(LDG)methods for the modified phase field crystal(MPFC)equation.In which,the first order linear scheme is based on the invariant energy quadratization approach.The MPFC equation is a damped wave equation,and to preserve an energy stability,it is necessary to introduce a pseudo energy,which all increase the difficulty of constructing numerical methods comparing with the phase field crystal(PFC)equation.Due to the severe time step restriction of explicit timemarchingmethods,we introduce the first order and second order semi-implicit schemes,which are proved to be unconditionally energy stable.In order to improve the temporal accuracy,the semi-implicit spectral deferred correction(SDC)method combining with the first order convex splitting scheme is employed.Numerical simulations of the MPFC equation always need long time to reach steady state,and then adaptive time-stepping method is necessary and of paramount importance.The schemes at the implicit time level are linear or nonlinear and we solve them by multigrid solver.Numerical experiments of the accuracy and long time simulations are presented demonstrating the capability and efficiency of the proposed methods,and the effectiveness of the adaptive time-stepping strategy.