期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Modified Transitional Korteweg-De Vries Equation: Posed in the Quarter Plane
1
作者 Charles Bu 《Journal of Applied Mathematics and Physics》 2024年第7期2691-2701,共11页
This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Un... This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either 1) f(t)≤0, f′(t)≥0or 2) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution. 展开更多
关键词 Modified Transitional KdV Equation Initial-Boundary Value Problem Semi-Group local and global existence
在线阅读 下载PDF
An Initial-Boundary Value Problem for a Modified Transitional Korteweg-de Vries Equation
2
作者 Charles Bu 《Journal of Applied Mathematics and Physics》 2025年第1期138-147,共10页
We study the following modified transitional Korteweg-de Vries equation ut+f(t)upux+uxxx=0, (x,t)∈R+×R+, (p≥2is an even integer) with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t... We study the following modified transitional Korteweg-de Vries equation ut+f(t)upux+uxxx=0, (x,t)∈R+×R+, (p≥2is an even integer) with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either (i) f(t)≤0, f′(t)≥0or (ii) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution. 展开更多
关键词 Modified Transitional KdV Equation Initial-Boundary Value Problem Semi-Group local and global existence
在线阅读 下载PDF
SHORT COMMUNICATION SECTION Some Geometric Flows on Kahler Manifolds 被引量:1
3
作者 SUN Xiaowei WANG Youde 《Journal of Partial Differential Equations》 2010年第2期203-208,共6页
We define a kind of KdV (Korteweg-de Vries) geometric flow for maps from a real line or a circle into a Kahler manifold (N,J,h) with complex structure J and metric h as the generalization of the vortex filament dy... We define a kind of KdV (Korteweg-de Vries) geometric flow for maps from a real line or a circle into a Kahler manifold (N,J,h) with complex structure J and metric h as the generalization of the vortex filament dynamics from a real line or a circle. By using the geometric analysis, the existence of the Cauchy problems of the KdV geometric flows will be investigated in this note. 展开更多
关键词 KdV geometric flow conservation law local and global existence.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部