In response to China’s national strategy of“Curriculum Ideology and Politics”(CIP),which integrates moral and political education into all disciplines,this study addresses the challenge of effectively implementing ...In response to China’s national strategy of“Curriculum Ideology and Politics”(CIP),which integrates moral and political education into all disciplines,this study addresses the challenge of effectively implementing CIP in college English courses.Moving beyond generic approaches,this practice-oriented research project developed and piloted a localized CIP model for the widely used New Horizon College English(Fourth Edition)textbook.The core innovation lies in constructing a three-dimensional“textbook-culture-ideology”element map that systematically links specific unit themes with the unique cultural resources of Tangshan City,such as its industrial heritage,the“Spirit of Earthquake Resilience,”and intangible cultural heritage like Shadow Puppetry.Employing a methodology of content analysis,case study,and action research,the project identified synergies between textbook content and local culture,designed corresponding teaching activities,and implemented them in freshman English classes.Findings indicate that this localized approach enhanced student engagement,fostered cultural confidence,and facilitated the natural integration of ideological-political elements into language learning.The study concludes that the“textbook-culture-ideology”mapping model offers a practical,replicable framework for enriching college English teaching with meaningful local context,thereby achieving CIP goals more authentically.It provides valuable insights for pedagogical innovation in similar contexts.展开更多
The present work was initiated for searching and evaluating the total heavy metal content in some selected local resources used by traditional healers in locally made antidotes to search for their toxicity. Elekat pub...The present work was initiated for searching and evaluating the total heavy metal content in some selected local resources used by traditional healers in locally made antidotes to search for their toxicity. Elekat public slaughterhouse in the city of Bukavu, the central market of Kadutu and in the Ruzizi plain, precisely in Sange city, have been the purchased centers. The samples of bull and cow horns, oil palm nut shells, cow bones, ginger, black pepper and Mwenga salt were used. The spectrometric method has been used to carry out heavy metal content in each local resource using the atomic absorption spectrometer (VARIAN 1275). The heavy metals found and their average content are as follows: copper (Cu: 124.79 mg/kg), lead (Pb: 76.41 mg/kg), chromium (Cr: 33.9 mg/kg), zinc (Zn: 190.86 mg/kg), Arsenic (As: 107.41 mg/kg) and cadmium (Cd: 0.05 mg/kg). The averages of total heavy metal contents for all samples are below the standard of each one. The determination of the heavy metal contents in these samples allows evaluating human intoxication risk. These results show that antidote technology can be run without any toxicity risk and showed statistically significant differences compared to the controls (p 0.05) for chromium, zinc and cadmium have been recorded. However, most of the heavy metals molecules being thioloprives and then bioccumulatives, antidotes made from them shall not be consumed during a long period.展开更多
The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extract...The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extracted from lunar regolith,which is highly rich in oxygen and contains polymetallic oxides.This oxygen and metal extraction can be achieved using existing metallurgical techniques.Furthermore,the ample reserves of water ice on the Moon offer another means for oxygen production.This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon,drawing from an analysis of lunar resources and environmental conditions.It delves into the principles,processes,advantages,and drawbacks of water-ice electrolysis,two-step oxygen production from lunar regolith,and one-step oxygen production from lunar regolith.The two-step methods involve hydrogen reduction,carbothermal reduction,and hydrometallurgy,while the one-step methods encompass fluorination/chlorination,high-temperature decomposition,molten salt electrolysis,and molten regolith electrolysis(MOE).Following a thorough comparison of raw materials,equipment,technology,and economic viability,MOE is identified as the most promising approach for future in-situ oxygen production on the Moon.Considering the corrosion characteristics of molten lunar regolith at high temperatures,along with the Moon's low-gravity environment,the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon.This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives.展开更多
In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):104...In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].展开更多
Laser-welded Ti-6Al-4 V is prone to severe residual stresses,microstructural variation,and structural de-fects which are known detrimental to the mechanical properties of weld joints.Residual stress removal is typical...Laser-welded Ti-6Al-4 V is prone to severe residual stresses,microstructural variation,and structural de-fects which are known detrimental to the mechanical properties of weld joints.Residual stress removal is typically applied to weld joints for engineering purposes via heat treatment,in order to avoid prema-ture failure and performance degradation.In the present work,we found that proper welding residual stresses in laser-welded Ti-6Al-4 V sheets can maintain better ductility during uniaxial tension,as op-posed to the stress-relieved counterparts.A detailed experimental investigation has been performed on the deformation behaviours of Ti-6Al-4 V butt welds,including residual stress distribution characteriza-tions by focused ion beam ring-coring coupled with digital image correlation(FIB-DIC),X-ray comput-erized tomography(CT)for internal voids,and in-situ DIC analysis of the subregional strain evolutions.It was found that the pores preferentially distributed near the fusion zone(FZ)boundary,where the compressive residual stress was up to-330 MPa.The removal of residual stress resulted in a changed failure initiation site from the base material to the FZ boundary,the former with ductile and the latter with brittle fracture characteristics under tensile deformation.The combined effects of residual stresses,microstructures,and internal pores on the mechanical responses are discussed in detail.This work high-lights the importance of inevitable residual stress and pores in laser weld pieces,leading to key insights for post-welding treatment and service performance evaluations.展开更多
Neurons are highly polarized cells with axons reaching over a meter long in adult humans.To survive and maintain their proper function,neurons depend on specific mechanisms that regulate spatiotemporal signaling and m...Neurons are highly polarized cells with axons reaching over a meter long in adult humans.To survive and maintain their proper function,neurons depend on specific mechanisms that regulate spatiotemporal signaling and metabolic events,which need to be carried out at the right place,time,and intensity.Such mechanisms include axonal transport,local synthesis,and liquid-liquid phase separations.Alterations and malfunctions in these processes are correlated to neurodegenerative diseases such as amyotrophic lateral sclerosis(ALS).展开更多
A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,...A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,it exhibits a good combination of yield strength(roughly 1300 MPa)and ductility(approach-ing 20%).Firstly,a multi-phase heterogeneous structure is tailored ranging from nano to micron.Cu is efficiently precipitated as nanoscale clusters(4.2 nm),high-density cuboidal L1_(2) particles(20-40 nm)and L2_(1) particles(500-800 nm)are found to be embedded in the matrix and a bimodal heterogeneous grain structure(1-40μm)is constructed.Secondly,the introduction of Cu effectively suppresses the pre-cipitation of coarse L21 phase at grain boundaries,reducing its volume fraction by 80%and replaced by smaller-scale continuous precipitations within the grains.Thirdly,the high mixing enthalpy gap of Cu and the matrix leads to the formation of local chemical fluctuation and the consequential rugged topog-raphy in the matrix,which result in retarded dislocation motion and promotes dislocation plugging and interlocking during strain,enhancing yield stress and work hardening rate.This study provides a valuable perspective to enhance strength and ductility via enlarged local chemical fluctuation-tailored multi-phase heterogeneous structures.展开更多
Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accu...Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods. Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy. Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2, Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%, 29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies the importance of inter-class dependencies through ablation experiments.展开更多
The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to indus...The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.展开更多
Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environ...Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.展开更多
The local structure and thermophysical behavior of Mg-La liquid alloys were in-depth understood using deep potential molecular dynamic(DPMD) simulation driven via machine learning to promote the development of Mg-La a...The local structure and thermophysical behavior of Mg-La liquid alloys were in-depth understood using deep potential molecular dynamic(DPMD) simulation driven via machine learning to promote the development of Mg-La alloys. The robustness of the trained deep potential(DP) model was thoroughly evaluated through several aspects, including root-mean-square errors(RMSEs), energy and force data, and structural information comparison results;the results indicate the carefully trained DP model is reliable. The component and temperature dependence of the local structure in the Mg-La liquid alloy was analyzed. The effect of Mg content in the system on the first coordination shell of the atomic pairs is the same as that of temperature. The pre-peak demonstrated in the structure factor indicates the presence of a medium-range ordered structure in the Mg-La liquid alloy, which is particularly pronounced in the 80at% Mg system and disappears at elevated temperatures. The density, self-diffusion coefficient, and shear viscosity for the Mg-La liquid alloy were predicted via DPMD simulation, the evolution patterns with Mg content and temperature were subsequently discussed, and a database was established accordingly. Finally, the mixing enthalpy and elemental activity of the Mg-La liquid alloy at 1200 K were reliably evaluated,which provides new guidance for related studies.展开更多
Inhomogeneous Calderon-Zygmund operator T maps each atom into an approximate molecule of weighted local Hardy space if and only if some approximate cancellation condition holds for T.An equivalent norm for weighted Le...Inhomogeneous Calderon-Zygmund operator T maps each atom into an approximate molecule of weighted local Hardy space if and only if some approximate cancellation condition holds for T.An equivalent norm for weighted Lebesgue space which has vanishing moments up to order s plays an important role,where s∈N.展开更多
We show that the torsion module Tor_(j)^(R)(R/a,H_(a)^(i)(X))is in a Serre subcategory for the bounded below R-complex X.In addition,we prove the isomorphism Tor_(s-t)^(R)(R/a,X)≅Tor_(s)^(R)(R/a,H_(a)^(t)(X))in some c...We show that the torsion module Tor_(j)^(R)(R/a,H_(a)^(i)(X))is in a Serre subcategory for the bounded below R-complex X.In addition,we prove the isomorphism Tor_(s-t)^(R)(R/a,X)≅Tor_(s)^(R)(R/a,H_(a)^(t)(X))in some case.As an application,the Betti number of a complex X in a prime ideal p can be computed by the Betti number of the local cohomology modules of X in p.展开更多
This work presents a method for the three-dimensional localization of individual shallow NV center in diamond,leveraging the near-field quenching effect of a gold tip.Our experimental setup involves the use of an atom...This work presents a method for the three-dimensional localization of individual shallow NV center in diamond,leveraging the near-field quenching effect of a gold tip.Our experimental setup involves the use of an atomic force microscope to precisely move the gold tip close to the NV center,while simultaneously employing a home-made confocal microscope to monitor the fluorescence of the NV center.This approach allows for lateral super-resolution,achieving a full width at half maximum(FWHM)of 38.0 nm and a location uncertainty of 0.7 nm.Additionally,we show the potential of this method for determining the depth of the NV centers.We also attempt to determine the depth of the NV centers in combination with finite-difference time-domain(FDTD)simulations.Compared to other depth determination methods,this approach allows for simultaneous lateral and longitudinal localization of individual NV centers,and holds promise for facilitating manipulation of the local environment surrounding the NV center.展开更多
[Objective]The channel straightening project of the Pinglu Canal has fragmented the river course,compromising the integrity of original river course and causing ecosystem patchiness.Understanding the current status of...[Objective]The channel straightening project of the Pinglu Canal has fragmented the river course,compromising the integrity of original river course and causing ecosystem patchiness.Understanding the current status of fish resources and the characteristics of their diversity is crucial for the ecological management of the Pinglu Canal.[Methods]During the spring and autumn in 2021 and 2022,a survey of fish resources and species diversity in the Pinglu Canal was conducted using multi-mesh gill nets.A total of 125 fish species were collected,belonging to 10 orders,34 families,and 89 genera.[Results]The result showed that the Pinglu Canal contained three nationally protected Class II species,two endemic species of the Qinjiang River,three anadromous/migratory species,and eight invasive species,accounting for 2.4%,1.6%,2.4%,and 6.4%of the total species,respectively.The fish community primarily consisted of mid-and bottom-dwelling,adhesive-egg-laying,and omnivorous species.The Shannon-Wiener,Simpson,Margalef,and Pielou indices of the fish community in the Pinglu Canal ranged from 2.347 to 2.757,0.081 to 0.151,3.493 to 4.382,and 0.812 to 0.892,respectively.These indices showed relatively uniform distribution across different river reaches.[Conclusion]The result indicate that the fish community structure in the Pinglu Canal is relatively uniform.The reach from the Yujiang River to the Shaping River shows higher stability,while other river reaches experience moderate or severe disturbances.This study provides supplementary baseline data on the fish community structure in the Pinglu Canal and explores the potential impact of inter-basin connectivity on fish resources,aiming to provide a scientific basis for habitat restoration assessments after the channel straightening project.展开更多
In order to contribute to a better understanding of the biodiversity of local chicken populations, this study focused on the description of the essential qualitative parameters in the phenotypic characterization of lo...In order to contribute to a better understanding of the biodiversity of local chicken populations, this study focused on the description of the essential qualitative parameters in the phenotypic characterization of local species. Conducted in 6 localities in the Far North Region of Cameroon (Doukoula, Yagoua, Guidiguis, Dziguilao, Maroua 3rd and Méri), a population of 240 local chickens, including 172 hens and 68 cocks were characterized in family farms. The choice of localities was made on the basis of their strong potential local chicken flocks in the region. To this end, each animal was the subject of a qualitative description based on the identification of the sex of the animal, the description of the colorations of the plumage and extremities, and the description of the types of format, plumage and crests. All observations were made with the naked eye and in daylight and then photographed. The main results show that the plumage colors are multiple and dominated by the White-Pied-Black (21.7%) and the Mille-fleur (20.8%);the wattles are dominated by the red (60%) and the pink (35.4%);the tarsi are dominated by the white (43.8%) and the black (32.08%);the white skin (92.5%) dominates over the pink skin (7.5%);the “Smooth-uniform” feather is dominant (97.08%), followed by the smooth-crested type (2.08%) and the fries type (0.82%);the medium size of the chickens is dominant (86.66%), followed by the dwarf size (9.58%) and the large size (3.75%). The results of this study demonstrate that there is a strong phenotypic diversity within the local chicken population. This diversity can serve as a basis for the development of selection, conservation and genetic potential improvement programs based on rational exploitation of the local chicken.展开更多
Malaria is a potentially lethal disease caused by parasites of the Plasmodium genus, transmitted to humans through the bite of infected female mosquitoes, primarily Anopheles. To control this disease, various strategi...Malaria is a potentially lethal disease caused by parasites of the Plasmodium genus, transmitted to humans through the bite of infected female mosquitoes, primarily Anopheles. To control this disease, various strategies are implemented, including biological control, which targets the vectors of the parasite. This approach uses biological agents such as entomopathogenic fungi, including Metarhizium pingshaense, a fungus capable of causing lethal infections in mosquitoes. The production of Metarhizium pingshaense is still limited in Burkina Faso, and local cultivation of this fungus could help fill this gap. A study was conducted to identify optimal local substrates that promote its growth. Indeed, after gathering information on the dietary habits of populations in Bobo-Dioulasso and Bama, three potential substrates were selected: rice, cornmeal dough (MFL), and beans. These substrates were inoculated with two strains of Metarhizium pingshaense (S10 and S26) to assess their ability to support fungal growth and their effectiveness. Experimental results showed that MFL and bean substrates favored optimal growth of Metarhizium pingshaense, with growths of 1.91 cm and 2.13 cm after 8 days, compared to 1.83 cm on a standard media (PDA). In terms of virulence, S26 strain caused 60% mosquito mortality on both the bean and PDA media, while S10 strain induced mortalities of 50% for bean and 62% for PDA.展开更多
The pivotal role of complex numbers in quantum mechanics underpins the resource theory of imaginarity.We investigate imaginarity dynamics in a single-qubit open system coupled to a non-Markovian environment.Crucially,...The pivotal role of complex numbers in quantum mechanics underpins the resource theory of imaginarity.We investigate imaginarity dynamics in a single-qubit open system coupled to a non-Markovian environment.Crucially,cavity field detuning emerges as the dominant regulator,driving continuous conversion between the real and imaginary components of coherence.Nonzero detuning induces characteristic non-periodic oscillations of imaginarity between zero and maximal values,preventing complete decoherence at specific times.We establish that imaginarity resources stem from both intrinsic system evolution and environmental feedback.Significantly,detuning-driven imaginarity generation persists even in Markovian regimes,demonstrating its origin beyond environmental memory effects.These insights offer new perspectives for understanding and harnessing quantum coherence.展开更多
Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field c...Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field coupled with chloride ions(Cl-)fixation strategy in dual single-atom catalysts(DSACs)was proposed,and the resultant catalyst delivered considerable ORR performance in a seawater electrolyte,with a high half-wave potential(E_(1/2))of 0.868 V and a good maximum power density(Pmax)of 182 mW·cm^(−2)in the assembled SZABs,much higher than those of the Pt/C catalyst(E_(1/2):0.846 V;Pmax:150 mW·cm^(−2)).The in-situ characterization and theoretical calculations revealed that the Fe sites have a higher Cl^(−)adsorption affinity than the Co sites,and preferentially adsorbs Cl^(−)in a seawater electrolyte during the ORR process,and thus constructs a low-concentration Cl^(−)local microenvironment through the common-ion exclusion effect,which prevents Cl^(−)adsorption and corrosion in the Co active centers,achieving impressive catalytic stability.In addition,the directional charge movement between Fe and Co atomic pairs establishes a local electric field,optimizing the adsorption energy of Co sites for oxygen-containing intermediates,and further improving the ORR activity.展开更多
基金2025 Tangshan Normal University Education and Teaching Reform Research and Practice Project“Constructing an Ideological and Political Element Map for College English——Integrating Tangshan’s Local Cultural Resources into New Horizon College English(2025JGZD131)2025 Hebei Province Foreign Language Teaching Reform Research and Practice Project for Regular Undergraduate Universities“A Study on the Tri-dimensional Collaborative Teaching Model(Reading-Writing-Culture-Ideology)for College English under the‘Four New’Initiative:An Empirical Exploration Based on Smart Platforms”(2025WYJG072)。
文摘In response to China’s national strategy of“Curriculum Ideology and Politics”(CIP),which integrates moral and political education into all disciplines,this study addresses the challenge of effectively implementing CIP in college English courses.Moving beyond generic approaches,this practice-oriented research project developed and piloted a localized CIP model for the widely used New Horizon College English(Fourth Edition)textbook.The core innovation lies in constructing a three-dimensional“textbook-culture-ideology”element map that systematically links specific unit themes with the unique cultural resources of Tangshan City,such as its industrial heritage,the“Spirit of Earthquake Resilience,”and intangible cultural heritage like Shadow Puppetry.Employing a methodology of content analysis,case study,and action research,the project identified synergies between textbook content and local culture,designed corresponding teaching activities,and implemented them in freshman English classes.Findings indicate that this localized approach enhanced student engagement,fostered cultural confidence,and facilitated the natural integration of ideological-political elements into language learning.The study concludes that the“textbook-culture-ideology”mapping model offers a practical,replicable framework for enriching college English teaching with meaningful local context,thereby achieving CIP goals more authentically.It provides valuable insights for pedagogical innovation in similar contexts.
文摘The present work was initiated for searching and evaluating the total heavy metal content in some selected local resources used by traditional healers in locally made antidotes to search for their toxicity. Elekat public slaughterhouse in the city of Bukavu, the central market of Kadutu and in the Ruzizi plain, precisely in Sange city, have been the purchased centers. The samples of bull and cow horns, oil palm nut shells, cow bones, ginger, black pepper and Mwenga salt were used. The spectrometric method has been used to carry out heavy metal content in each local resource using the atomic absorption spectrometer (VARIAN 1275). The heavy metals found and their average content are as follows: copper (Cu: 124.79 mg/kg), lead (Pb: 76.41 mg/kg), chromium (Cr: 33.9 mg/kg), zinc (Zn: 190.86 mg/kg), Arsenic (As: 107.41 mg/kg) and cadmium (Cd: 0.05 mg/kg). The averages of total heavy metal contents for all samples are below the standard of each one. The determination of the heavy metal contents in these samples allows evaluating human intoxication risk. These results show that antidote technology can be run without any toxicity risk and showed statistically significant differences compared to the controls (p 0.05) for chromium, zinc and cadmium have been recorded. However, most of the heavy metals molecules being thioloprives and then bioccumulatives, antidotes made from them shall not be consumed during a long period.
基金financially supported by the National Natural Science Foundation of China(Nos.52404328,52274412,and 52374418)the China Postdoctoral Science Foundation(No.2024M753248)。
文摘The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extracted from lunar regolith,which is highly rich in oxygen and contains polymetallic oxides.This oxygen and metal extraction can be achieved using existing metallurgical techniques.Furthermore,the ample reserves of water ice on the Moon offer another means for oxygen production.This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon,drawing from an analysis of lunar resources and environmental conditions.It delves into the principles,processes,advantages,and drawbacks of water-ice electrolysis,two-step oxygen production from lunar regolith,and one-step oxygen production from lunar regolith.The two-step methods involve hydrogen reduction,carbothermal reduction,and hydrometallurgy,while the one-step methods encompass fluorination/chlorination,high-temperature decomposition,molten salt electrolysis,and molten regolith electrolysis(MOE).Following a thorough comparison of raw materials,equipment,technology,and economic viability,MOE is identified as the most promising approach for future in-situ oxygen production on the Moon.Considering the corrosion characteristics of molten lunar regolith at high temperatures,along with the Moon's low-gravity environment,the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon.This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives.
基金Supported by NSFC(Nos.11661025,12161024)Natural Science Foundation of Guangxi(Nos.2020GXNSFAA159118,2021GXNSFAA196045)+2 种基金Guangxi Science and Technology Project(No.Guike AD20297006)Training Program for 1000 Young and Middle-aged Cadre Teachers in Universities of GuangxiNational College Student's Innovation and Entrepreneurship Training Program(No.202110595049)。
文摘In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].
基金supported by the National Key Re-search&Development Plan of China(No.2020YFA0405900)the Major Research Plan of the National Natural Science Founda-tion of China(No.92263201)Y.P.Xia would like to thank the support by the Jiangsu Funding Program for Excellent Postdoctoral Talent.All authors thank the Advanced Material Research Institute of Jiangsu Industrial Technology Research Institute(JITRI,Suzhou,China)for the experimental support.
文摘Laser-welded Ti-6Al-4 V is prone to severe residual stresses,microstructural variation,and structural de-fects which are known detrimental to the mechanical properties of weld joints.Residual stress removal is typically applied to weld joints for engineering purposes via heat treatment,in order to avoid prema-ture failure and performance degradation.In the present work,we found that proper welding residual stresses in laser-welded Ti-6Al-4 V sheets can maintain better ductility during uniaxial tension,as op-posed to the stress-relieved counterparts.A detailed experimental investigation has been performed on the deformation behaviours of Ti-6Al-4 V butt welds,including residual stress distribution characteriza-tions by focused ion beam ring-coring coupled with digital image correlation(FIB-DIC),X-ray comput-erized tomography(CT)for internal voids,and in-situ DIC analysis of the subregional strain evolutions.It was found that the pores preferentially distributed near the fusion zone(FZ)boundary,where the compressive residual stress was up to-330 MPa.The removal of residual stress resulted in a changed failure initiation site from the base material to the FZ boundary,the former with ductile and the latter with brittle fracture characteristics under tensile deformation.The combined effects of residual stresses,microstructures,and internal pores on the mechanical responses are discussed in detail.This work high-lights the importance of inevitable residual stress and pores in laser weld pieces,leading to key insights for post-welding treatment and service performance evaluations.
文摘Neurons are highly polarized cells with axons reaching over a meter long in adult humans.To survive and maintain their proper function,neurons depend on specific mechanisms that regulate spatiotemporal signaling and metabolic events,which need to be carried out at the right place,time,and intensity.Such mechanisms include axonal transport,local synthesis,and liquid-liquid phase separations.Alterations and malfunctions in these processes are correlated to neurodegenerative diseases such as amyotrophic lateral sclerosis(ALS).
基金financial support from the National Natural Science Foundation of China(Nos.52104306,52274301,52334009)the Aeronautical Science Foundation of China(No.2023Z0530S6005)+3 种基金the National Key Research and Development Program of China(No.2023YFB3712401)the Science and Technology Commission of Shanghai Municipality(No.21DZ1208900)the Academician Workstation of Kunming University of Science and Technology(2024),the Ningbo Yongjiang Talent-Introduction Programme(No.2022A-023-C)the Zhejiang Phenomenological Materials Technology Co.,Ltd.,China.
文摘A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,it exhibits a good combination of yield strength(roughly 1300 MPa)and ductility(approach-ing 20%).Firstly,a multi-phase heterogeneous structure is tailored ranging from nano to micron.Cu is efficiently precipitated as nanoscale clusters(4.2 nm),high-density cuboidal L1_(2) particles(20-40 nm)and L2_(1) particles(500-800 nm)are found to be embedded in the matrix and a bimodal heterogeneous grain structure(1-40μm)is constructed.Secondly,the introduction of Cu effectively suppresses the pre-cipitation of coarse L21 phase at grain boundaries,reducing its volume fraction by 80%and replaced by smaller-scale continuous precipitations within the grains.Thirdly,the high mixing enthalpy gap of Cu and the matrix leads to the formation of local chemical fluctuation and the consequential rugged topog-raphy in the matrix,which result in retarded dislocation motion and promotes dislocation plugging and interlocking during strain,enhancing yield stress and work hardening rate.This study provides a valuable perspective to enhance strength and ductility via enlarged local chemical fluctuation-tailored multi-phase heterogeneous structures.
基金funded by the Youth Fund of the National Natural Science Foundation of China(Grant No.42261070).
文摘Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods. Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy. Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2, Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%, 29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies the importance of inter-class dependencies through ablation experiments.
文摘The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.
基金supported by the project“GEF9874:Strengthening Coordinated Approaches to Reduce Invasive Alien Species(lAS)Threats to Globally Significant Agrobiodiversity and Agroecosystems in China”funding from the Excellent Talent Training Funding Project in Dongcheng District,Beijing,with project number 2024-dchrcpyzz-9.
文摘Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.
基金financially supported by the National Key R &D Program of China (No.2022YFB3709300)。
文摘The local structure and thermophysical behavior of Mg-La liquid alloys were in-depth understood using deep potential molecular dynamic(DPMD) simulation driven via machine learning to promote the development of Mg-La alloys. The robustness of the trained deep potential(DP) model was thoroughly evaluated through several aspects, including root-mean-square errors(RMSEs), energy and force data, and structural information comparison results;the results indicate the carefully trained DP model is reliable. The component and temperature dependence of the local structure in the Mg-La liquid alloy was analyzed. The effect of Mg content in the system on the first coordination shell of the atomic pairs is the same as that of temperature. The pre-peak demonstrated in the structure factor indicates the presence of a medium-range ordered structure in the Mg-La liquid alloy, which is particularly pronounced in the 80at% Mg system and disappears at elevated temperatures. The density, self-diffusion coefficient, and shear viscosity for the Mg-La liquid alloy were predicted via DPMD simulation, the evolution patterns with Mg content and temperature were subsequently discussed, and a database was established accordingly. Finally, the mixing enthalpy and elemental activity of the Mg-La liquid alloy at 1200 K were reliably evaluated,which provides new guidance for related studies.
文摘Inhomogeneous Calderon-Zygmund operator T maps each atom into an approximate molecule of weighted local Hardy space if and only if some approximate cancellation condition holds for T.An equivalent norm for weighted Lebesgue space which has vanishing moments up to order s plays an important role,where s∈N.
基金Natural Science Foundation of Gansu Province(23JRRA866)Higher Education Innovation Fund of Gansu Provincial Department of Education(2025A-132)+1 种基金University-level Scientific Research and Innovation Project of Gansu University of Political Science and Law(GZF2024XQN16)Youth Foundation of Lanzhou Jiaotong University(2023023)。
文摘We show that the torsion module Tor_(j)^(R)(R/a,H_(a)^(i)(X))is in a Serre subcategory for the bounded below R-complex X.In addition,we prove the isomorphism Tor_(s-t)^(R)(R/a,X)≅Tor_(s)^(R)(R/a,H_(a)^(t)(X))in some case.As an application,the Betti number of a complex X in a prime ideal p can be computed by the Betti number of the local cohomology modules of X in p.
基金supported by the National Natural Science Foundation of China(T2325023,92265204,12104447)the National Key R&D Program of China(2023YFF0718400)+1 种基金the Innovation Program for Quantum Science and Technology(2021ZD0302200)the Fundamental Research Funds for the Central Universities。
文摘This work presents a method for the three-dimensional localization of individual shallow NV center in diamond,leveraging the near-field quenching effect of a gold tip.Our experimental setup involves the use of an atomic force microscope to precisely move the gold tip close to the NV center,while simultaneously employing a home-made confocal microscope to monitor the fluorescence of the NV center.This approach allows for lateral super-resolution,achieving a full width at half maximum(FWHM)of 38.0 nm and a location uncertainty of 0.7 nm.Additionally,we show the potential of this method for determining the depth of the NV centers.We also attempt to determine the depth of the NV centers in combination with finite-difference time-domain(FDTD)simulations.Compared to other depth determination methods,this approach allows for simultaneous lateral and longitudinal localization of individual NV centers,and holds promise for facilitating manipulation of the local environment surrounding the NV center.
文摘[Objective]The channel straightening project of the Pinglu Canal has fragmented the river course,compromising the integrity of original river course and causing ecosystem patchiness.Understanding the current status of fish resources and the characteristics of their diversity is crucial for the ecological management of the Pinglu Canal.[Methods]During the spring and autumn in 2021 and 2022,a survey of fish resources and species diversity in the Pinglu Canal was conducted using multi-mesh gill nets.A total of 125 fish species were collected,belonging to 10 orders,34 families,and 89 genera.[Results]The result showed that the Pinglu Canal contained three nationally protected Class II species,two endemic species of the Qinjiang River,three anadromous/migratory species,and eight invasive species,accounting for 2.4%,1.6%,2.4%,and 6.4%of the total species,respectively.The fish community primarily consisted of mid-and bottom-dwelling,adhesive-egg-laying,and omnivorous species.The Shannon-Wiener,Simpson,Margalef,and Pielou indices of the fish community in the Pinglu Canal ranged from 2.347 to 2.757,0.081 to 0.151,3.493 to 4.382,and 0.812 to 0.892,respectively.These indices showed relatively uniform distribution across different river reaches.[Conclusion]The result indicate that the fish community structure in the Pinglu Canal is relatively uniform.The reach from the Yujiang River to the Shaping River shows higher stability,while other river reaches experience moderate or severe disturbances.This study provides supplementary baseline data on the fish community structure in the Pinglu Canal and explores the potential impact of inter-basin connectivity on fish resources,aiming to provide a scientific basis for habitat restoration assessments after the channel straightening project.
文摘In order to contribute to a better understanding of the biodiversity of local chicken populations, this study focused on the description of the essential qualitative parameters in the phenotypic characterization of local species. Conducted in 6 localities in the Far North Region of Cameroon (Doukoula, Yagoua, Guidiguis, Dziguilao, Maroua 3rd and Méri), a population of 240 local chickens, including 172 hens and 68 cocks were characterized in family farms. The choice of localities was made on the basis of their strong potential local chicken flocks in the region. To this end, each animal was the subject of a qualitative description based on the identification of the sex of the animal, the description of the colorations of the plumage and extremities, and the description of the types of format, plumage and crests. All observations were made with the naked eye and in daylight and then photographed. The main results show that the plumage colors are multiple and dominated by the White-Pied-Black (21.7%) and the Mille-fleur (20.8%);the wattles are dominated by the red (60%) and the pink (35.4%);the tarsi are dominated by the white (43.8%) and the black (32.08%);the white skin (92.5%) dominates over the pink skin (7.5%);the “Smooth-uniform” feather is dominant (97.08%), followed by the smooth-crested type (2.08%) and the fries type (0.82%);the medium size of the chickens is dominant (86.66%), followed by the dwarf size (9.58%) and the large size (3.75%). The results of this study demonstrate that there is a strong phenotypic diversity within the local chicken population. This diversity can serve as a basis for the development of selection, conservation and genetic potential improvement programs based on rational exploitation of the local chicken.
文摘Malaria is a potentially lethal disease caused by parasites of the Plasmodium genus, transmitted to humans through the bite of infected female mosquitoes, primarily Anopheles. To control this disease, various strategies are implemented, including biological control, which targets the vectors of the parasite. This approach uses biological agents such as entomopathogenic fungi, including Metarhizium pingshaense, a fungus capable of causing lethal infections in mosquitoes. The production of Metarhizium pingshaense is still limited in Burkina Faso, and local cultivation of this fungus could help fill this gap. A study was conducted to identify optimal local substrates that promote its growth. Indeed, after gathering information on the dietary habits of populations in Bobo-Dioulasso and Bama, three potential substrates were selected: rice, cornmeal dough (MFL), and beans. These substrates were inoculated with two strains of Metarhizium pingshaense (S10 and S26) to assess their ability to support fungal growth and their effectiveness. Experimental results showed that MFL and bean substrates favored optimal growth of Metarhizium pingshaense, with growths of 1.91 cm and 2.13 cm after 8 days, compared to 1.83 cm on a standard media (PDA). In terms of virulence, S26 strain caused 60% mosquito mortality on both the bean and PDA media, while S10 strain induced mortalities of 50% for bean and 62% for PDA.
基金support of the Tianchi Talented Young Doctoral Fund Project and Huyang Talent Research Startup Fund Project of Tarim University(Project Number:TDZKSS202511).
文摘The pivotal role of complex numbers in quantum mechanics underpins the resource theory of imaginarity.We investigate imaginarity dynamics in a single-qubit open system coupled to a non-Markovian environment.Crucially,cavity field detuning emerges as the dominant regulator,driving continuous conversion between the real and imaginary components of coherence.Nonzero detuning induces characteristic non-periodic oscillations of imaginarity between zero and maximal values,preventing complete decoherence at specific times.We establish that imaginarity resources stem from both intrinsic system evolution and environmental feedback.Significantly,detuning-driven imaginarity generation persists even in Markovian regimes,demonstrating its origin beyond environmental memory effects.These insights offer new perspectives for understanding and harnessing quantum coherence.
基金supported by the National Natural Science Foundation of China(52164028,52274297)the Start-up Research Foundation of Hainan University(KYQD(ZR)20008,KYQD(ZR)21125,KYQD(ZR)23169))+1 种基金Collaborative Innovation Center of Marine Science and Technology of Hainan University(XTCX2022HYC14)Innovative Research Project for Postgraduate Students in Hainan Province(Qhyb2024-95).
文摘Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field coupled with chloride ions(Cl-)fixation strategy in dual single-atom catalysts(DSACs)was proposed,and the resultant catalyst delivered considerable ORR performance in a seawater electrolyte,with a high half-wave potential(E_(1/2))of 0.868 V and a good maximum power density(Pmax)of 182 mW·cm^(−2)in the assembled SZABs,much higher than those of the Pt/C catalyst(E_(1/2):0.846 V;Pmax:150 mW·cm^(−2)).The in-situ characterization and theoretical calculations revealed that the Fe sites have a higher Cl^(−)adsorption affinity than the Co sites,and preferentially adsorbs Cl^(−)in a seawater electrolyte during the ORR process,and thus constructs a low-concentration Cl^(−)local microenvironment through the common-ion exclusion effect,which prevents Cl^(−)adsorption and corrosion in the Co active centers,achieving impressive catalytic stability.In addition,the directional charge movement between Fe and Co atomic pairs establishes a local electric field,optimizing the adsorption energy of Co sites for oxygen-containing intermediates,and further improving the ORR activity.