A new numerical differentiation method with local opti- mum by data segmentation is proposed. The segmentation of data is based on the second derivatives computed by a Fourier devel- opment method. A filtering process...A new numerical differentiation method with local opti- mum by data segmentation is proposed. The segmentation of data is based on the second derivatives computed by a Fourier devel- opment method. A filtering process is used to achieve acceptable segmentation. Numerical results are presented by using the data segmentation method, compared with the regularization method. For further investigation, the proposed algorithm is applied to the resistance capacitance (RC) networks identification problem, and improvements of the result are obtained by using this algorithm.展开更多
In this paper, the problem of locally optimum detection of weak pulse signals in narrow-band non-Gaussian noise is discussed. A generalized model is proposed for locally optimum detectors (LOD) and the corresponding p...In this paper, the problem of locally optimum detection of weak pulse signals in narrow-band non-Gaussian noise is discussed. A generalized model is proposed for locally optimum detectors (LOD) and the corresponding physical meaning is explained. On the basis of this generalized model, the LOD structures are derived for detecting both coherent- and incoherent-pulse signals in narrow-band non-Gaussian noise. The asymptotic relative efficiency (ARE) due to Pitman is used to evaluate the performance of these LODs. Finally, numerical calculations are carried out for the AREs of these LODs and some valuable results are obtained.展开更多
基金supported by the National Basic Research Program of China(2011CB013103)
文摘A new numerical differentiation method with local opti- mum by data segmentation is proposed. The segmentation of data is based on the second derivatives computed by a Fourier devel- opment method. A filtering process is used to achieve acceptable segmentation. Numerical results are presented by using the data segmentation method, compared with the regularization method. For further investigation, the proposed algorithm is applied to the resistance capacitance (RC) networks identification problem, and improvements of the result are obtained by using this algorithm.
文摘In this paper, the problem of locally optimum detection of weak pulse signals in narrow-band non-Gaussian noise is discussed. A generalized model is proposed for locally optimum detectors (LOD) and the corresponding physical meaning is explained. On the basis of this generalized model, the LOD structures are derived for detecting both coherent- and incoherent-pulse signals in narrow-band non-Gaussian noise. The asymptotic relative efficiency (ARE) due to Pitman is used to evaluate the performance of these LODs. Finally, numerical calculations are carried out for the AREs of these LODs and some valuable results are obtained.