Fast and satisfied medical ultrasound segmentation is known to be difficult due to speckle noises and other artificial effects. Since speckle noise is formed from random signals which are emitted by an ultrasound syst...Fast and satisfied medical ultrasound segmentation is known to be difficult due to speckle noises and other artificial effects. Since speckle noise is formed from random signals which are emitted by an ultrasound system, we can’t encounter the same way as other image noises. Lack of information in ultrasound images is another problem. Thus, segmentation results may not be accurate enough by means of customary image segmentation methods. Those methods that can specify undesirable effects and segment them by eliminating artificial effects, should be chosen. It seems to be a complicated work with high computational load. The current study presents a different approach to ultrasound image segmentation that relies mainly on local evaluation, named as local histogram range image method which is modified by means of discrete wavelet transform. Thus, a significant decrease in computational load is then achieved. The results show that it is possible for tissues to be segmented correctly.展开更多
This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><...This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span>展开更多
A new algorithm taking the spatial context of local features into account by utilizing contextualized histograms was proposed to recognize facial expression. The contextualized histograms were extracted fromtwo widely...A new algorithm taking the spatial context of local features into account by utilizing contextualized histograms was proposed to recognize facial expression. The contextualized histograms were extracted fromtwo widely used descriptors—the local binary pattern( LBP) and weber local descriptor( WLD). The LBP and WLD feature histograms were extracted separately fromeach facial image,and contextualized histogram was generated as feature vectors to feed the classifier. In addition,the human face was divided into sub-blocks and each sub-block was assigned different weights by their different contributions to the intensity of facial expressions to improve the recognition rate. With the support vector machine(SVM) as classifier,the experimental results on the 2D texture images fromthe 3D-BU FE dataset indicated that contextualized histograms improved facial expression recognition performance when local features were employed.展开更多
Glaucoma is a chronic and progressive optic neurodegenerative disease leading to vision deterioration and in most cases produce increased pressure within the eye. This is due to the backup of fluid in the eye; it caus...Glaucoma is a chronic and progressive optic neurodegenerative disease leading to vision deterioration and in most cases produce increased pressure within the eye. This is due to the backup of fluid in the eye; it causes damage to the optic nerve. Hence, early detection diagnosis and treatment of an eye help to prevent the loss of vision. In this paper, a novel method is proposed for the early detection of glaucoma using a combination of magnitude and phase features from the digital fundus images. Local binary patterns(LBP) and Daugman’s algorithm are used to perform the feature set extraction.The histogram features are computed for both the magnitude and phase components. The Euclidean distance between the feature vectors are analyzed to predict glaucoma. The performance of the proposed method is compared with the higher order spectra(HOS)features in terms of sensitivity, specificity, classification accuracy and execution time. The proposed system results 95.45% output for sensitivity, specificity and classification. Also, the execution time for the proposed method takes lesser time than the existing method which is based on HOS features. Hence, the proposed system is accurate, reliable and robust than the existing approach to predict the glaucoma features.展开更多
回环检测是消除同时定位与地图构建(simultaneous localization and mapping,SLAM)系统中累计误差的关键所在,在光照条件或视角变化较大的情况下,传统的基于外观的回环检测方法往往失效。针对这种情况,在ORBSLAM2的框架基础上提出一种...回环检测是消除同时定位与地图构建(simultaneous localization and mapping,SLAM)系统中累计误差的关键所在,在光照条件或视角变化较大的情况下,传统的基于外观的回环检测方法往往失效。针对这种情况,在ORBSLAM2的框架基础上提出一种物体级的回环检测方法。利用目标检测获得的语义信息和特征点信息构建物体级语义地图。将语义地图抽象成拓扑图并将地标抽象成节点,用颜色直方图描述节点信息,结合节点间的几何关系,基于语义和几何一致性约束,提出一种图匹配方法实现回环检测。当检测到回环时,通过物体对齐的方式进行回环校正。在公开的TUM和USTC数据集上进行实验,结果表明提出的系统精度较ORBSLAM2平均提高了49.58%,并且构建的语义地图显示出良好的定位效果。展开更多
文摘Fast and satisfied medical ultrasound segmentation is known to be difficult due to speckle noises and other artificial effects. Since speckle noise is formed from random signals which are emitted by an ultrasound system, we can’t encounter the same way as other image noises. Lack of information in ultrasound images is another problem. Thus, segmentation results may not be accurate enough by means of customary image segmentation methods. Those methods that can specify undesirable effects and segment them by eliminating artificial effects, should be chosen. It seems to be a complicated work with high computational load. The current study presents a different approach to ultrasound image segmentation that relies mainly on local evaluation, named as local histogram range image method which is modified by means of discrete wavelet transform. Thus, a significant decrease in computational load is then achieved. The results show that it is possible for tissues to be segmented correctly.
文摘This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span>
基金Supported by the National Natural Science Foundation of China(60772066)
文摘A new algorithm taking the spatial context of local features into account by utilizing contextualized histograms was proposed to recognize facial expression. The contextualized histograms were extracted fromtwo widely used descriptors—the local binary pattern( LBP) and weber local descriptor( WLD). The LBP and WLD feature histograms were extracted separately fromeach facial image,and contextualized histogram was generated as feature vectors to feed the classifier. In addition,the human face was divided into sub-blocks and each sub-block was assigned different weights by their different contributions to the intensity of facial expressions to improve the recognition rate. With the support vector machine(SVM) as classifier,the experimental results on the 2D texture images fromthe 3D-BU FE dataset indicated that contextualized histograms improved facial expression recognition performance when local features were employed.
文摘Glaucoma is a chronic and progressive optic neurodegenerative disease leading to vision deterioration and in most cases produce increased pressure within the eye. This is due to the backup of fluid in the eye; it causes damage to the optic nerve. Hence, early detection diagnosis and treatment of an eye help to prevent the loss of vision. In this paper, a novel method is proposed for the early detection of glaucoma using a combination of magnitude and phase features from the digital fundus images. Local binary patterns(LBP) and Daugman’s algorithm are used to perform the feature set extraction.The histogram features are computed for both the magnitude and phase components. The Euclidean distance between the feature vectors are analyzed to predict glaucoma. The performance of the proposed method is compared with the higher order spectra(HOS)features in terms of sensitivity, specificity, classification accuracy and execution time. The proposed system results 95.45% output for sensitivity, specificity and classification. Also, the execution time for the proposed method takes lesser time than the existing method which is based on HOS features. Hence, the proposed system is accurate, reliable and robust than the existing approach to predict the glaucoma features.
文摘回环检测是消除同时定位与地图构建(simultaneous localization and mapping,SLAM)系统中累计误差的关键所在,在光照条件或视角变化较大的情况下,传统的基于外观的回环检测方法往往失效。针对这种情况,在ORBSLAM2的框架基础上提出一种物体级的回环检测方法。利用目标检测获得的语义信息和特征点信息构建物体级语义地图。将语义地图抽象成拓扑图并将地标抽象成节点,用颜色直方图描述节点信息,结合节点间的几何关系,基于语义和几何一致性约束,提出一种图匹配方法实现回环检测。当检测到回环时,通过物体对齐的方式进行回环校正。在公开的TUM和USTC数据集上进行实验,结果表明提出的系统精度较ORBSLAM2平均提高了49.58%,并且构建的语义地图显示出良好的定位效果。