期刊文献+
共找到467篇文章
< 1 2 24 >
每页显示 20 50 100
Remote Sensing Image Retrieval Based on 3D-Local Ternary Pattern(LTP)Features and Non-subsampled Shearlet Transform(NSST)Domain Statistical Features
1
作者 Hilly Gohain Baruah Vijay Kumar Nath Deepika Hazarika 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期137-164,共28页
With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain s... With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain statistical features(NSSTds)and local three dimensional local ternary pattern(3D-LTP)features,is proposed for high-resolution remote sensing images.We model the NSST image coefficients of detail subbands using 2-state laplacian mixture(LM)distribution and its three parameters are estimated using Expectation-Maximization(EM)algorithm.We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation calculated from approximation subband,and concatenate all of them with the 2-state LM parameters to describe the global features of the image.The various properties of NSST such as multiscale,localization and flexible directional sensitivity make it a suitable choice to provide an effective approximation of an image.In order to extract the dense local features,a new 3D-LTP is proposed where dimension reduction is performed via selection of‘uniform’patterns.The 3D-LTP is calculated from spatial RGB planes of the input image.The proposed inter-channel 3D-LTP not only exploits the local texture information but the color information is captured too.Finally,a fused feature representation(NSSTds-3DLTP)is proposed using new global(NSSTds)and local(3D-LTP)features to enhance the discriminativeness of features.The retrieval performance of proposed NSSTds-3DLTP features are tested on three challenging remote sensing image datasets such as WHU-RS19,Aerial Image Dataset(AID)and PatternNet in terms of mean average precision(MAP),average normalized modified retrieval rank(ANMRR)and precision-recall(P-R)graph.The experimental results are encouraging and the NSSTds-3DLTP features leads to superior retrieval performance compared to many well known existing descriptors such as Gabor RGB,Granulometry,local binary pattern(LBP),Fisher vector(FV),vector of locally aggregated descriptors(VLAD)and median robust extended local binary pattern(MRELBP).For WHU-RS19 dataset,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{41.93%,20.87%},{92.30%,32.68%},{86.14%,31.97%},{18.18%,15.22%},{8.96%,19.60%}and{15.60%,13.26%},respectively.For AID,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{152.60%,22.06%},{226.65%,25.08%},{185.03%,23.33%},{80.06%,12.16%},{50.58%,10.49%}and{62.34%,3.24%},respectively.For PatternNet,the NSSTds-3DLTP respectively improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{32.79%,10.34%},{141.30%,24.72%},{17.47%,10.34%},{83.20%,19.07%},{21.56%,3.60%},and{19.30%,0.48%}in terms of{MAP,ANMRR}.The moderate dimensionality of simple NSSTds-3DLTP allows the system to run in real-time. 展开更多
关键词 Remote sensing image retrieval laplacian mixture model local ternary pattern statistical modeling KS test texture global features
在线阅读 下载PDF
An Improved Real-Time Face Recognition System at Low Resolution Based on Local Binary Pattern Histogram Algorithm and CLAHE 被引量:2
2
作者 Kamal Chandra Paul Semih Aslan 《Optics and Photonics Journal》 2021年第4期63-78,共16页
This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><... This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span> 展开更多
关键词 Face Detection Face Recognition Low Resolution feature Extraction Security System Access Control System Viola-Jones Algorithm LBPH local Binary pattern Histogram
在线阅读 下载PDF
Android Malware Detection Using Local Binary Pattern and Principal Component Analysis
3
作者 Qixin Wu Zheng Qin +3 位作者 Jinxin Zhang Hui Yin Guangyi Yang Kuangsheng Hu 《国际计算机前沿大会会议论文集》 2017年第1期63-66,共4页
Nowadays,analysis methods based on big data have been widely used in malicious software detection.Since Android has become the dominator of smartphone operating system market,the number of Android malicious applicatio... Nowadays,analysis methods based on big data have been widely used in malicious software detection.Since Android has become the dominator of smartphone operating system market,the number of Android malicious applications are increasing rapidly as well,which attracts attention of malware attackers and researchers alike.Due to the endless evolution of the malware,it is critical to apply the analysis methods based on machine learning to detect malwares and stop them from leakaging our privacy information.In this paper,we propose a novel Android malware detection method based on binary texture feature recognition by Local Binary Pattern and Principal Component Analysis,which can visualize malware and detect malware accurately.Also,our method analyzes malware binary directly without any decompiler,sandbox or virtual machines,which avoid time and resource consumption caused by decompiler or monitor in this process.Experimentation on 5127 benigns and 5560 malwares shows that we obtain a detection accuracy of 90%. 展开更多
关键词 ANDROID MALWARE detection BINARY TEXTURE feature local BINARY pattern Principal component analysis
在线阅读 下载PDF
改进FCM和LFP相结合的白细胞图像分类 被引量:4
4
作者 庞春颖 刘记奎 韩立喜 《中国图象图形学报》 CSCD 北大核心 2013年第5期545-551,共7页
研究白细胞图像分类识别中有效的图像分割与特征提取方法,以提高白细胞图像的正确识别率。由于某些白细胞(粒细胞)中颗粒的存在,严重影响细胞核与细胞质区域的正确分割,通过将空间信息与核函数融入模糊C-均值聚类(FCM)算法,提出一种改进... 研究白细胞图像分类识别中有效的图像分割与特征提取方法,以提高白细胞图像的正确识别率。由于某些白细胞(粒细胞)中颗粒的存在,严重影响细胞核与细胞质区域的正确分割,通过将空间信息与核函数融入模糊C-均值聚类(FCM)算法,提出一种改进的FCM算法。应用该算法对白细胞图像进行分割,并采用数学形态学方法对分割后的图像进行处理,获得了很好的分割效果,解决了粒细胞的质核分割难题。对于细胞的纹理特征提取,通过对局部二值模式(LBP)中阈值参数的模糊化,建立了基于局部模糊模式(LFP)的纹理特征提取算法。运用本文方法进行图像分割和纹理提取,以支持向量机作为分类器,对CellAtlas的100幅白细胞图像进行了分类识别的实验,结果表明白细胞的正确识别率达到93%。 展开更多
关键词 白细胞分类 图像分割 模糊C-均值聚类 纹理特征提取 局部模糊模式
原文传递
改进的LFP算法在白细胞图像纹理特征提取与识别中的应用 被引量:4
5
作者 庞春颖 刘记奎 《光子学报》 EI CAS CSCD 北大核心 2013年第11期1375-1380,共6页
研究了白细胞图像特征提取和分类识别方法,以提高白细胞图像的正确识别率.针对细胞纹理特征的提取,采用改进的局部模糊模式提取白细胞图像的纹理特征,通过对局部二值模式中阈值参量的模糊化,建立了基于局部模糊模式的纹理特征提取算法.... 研究了白细胞图像特征提取和分类识别方法,以提高白细胞图像的正确识别率.针对细胞纹理特征的提取,采用改进的局部模糊模式提取白细胞图像的纹理特征,通过对局部二值模式中阈值参量的模糊化,建立了基于局部模糊模式的纹理特征提取算法.算法中引入"统一模式"方法,使提取的特征维度降低为10,且具有旋转不变性.通过有向无环图方法建立支持向量机组合分类器,对CellAtlas的100幅白细胞图像进行了分类识别的实验.实验结果表明:改进的局部模糊模式算法精简了纹理特征数量,起到了"去伪存真"的作用,在含有噪音的白细胞图像分类识别中表现出优良的性能,使提取的特征具有更好的"鲁棒性",并且具有运行时间短、效率高的特点,白细胞的正确识别率达到了93%.改进的支持向量机分类器表现出高效的分类效果,对小样本分析具有更好的特性. 展开更多
关键词 白细胞分类 纹理特征提取 局部模糊模式 统一模式 支持向量机
在线阅读 下载PDF
基于Local Jet变换空间纹理特征的肺结节分类方法 被引量:3
6
作者 代美玲 祁瑾 +1 位作者 周仲兴 高峰 《中国生物医学工程学报》 CAS CSCD 北大核心 2017年第1期12-19,共8页
为了在纹理特征下改善肺结节良、恶性的模式识别,提出一种基于local jet变换空间的纹理特征提取方法。首先利用二维高斯函数的前三阶偏微分函数将结节原图像变换到local jet纹理图像空间,然后利用纹理描述子在该空间提取特征参数。以灰... 为了在纹理特征下改善肺结节良、恶性的模式识别,提出一种基于local jet变换空间的纹理特征提取方法。首先利用二维高斯函数的前三阶偏微分函数将结节原图像变换到local jet纹理图像空间,然后利用纹理描述子在该空间提取特征参数。以灰度值的前四阶矩和基于灰度共生矩阵的特征参数作为纹理描述子,分别提取结节原图像和变换后纹理图像的特征参数,以BP神经网络作为分类器,对同一纹理描述子下的2个不同图像空间的经核主成分分析优化后的特征参数集进行结节良、恶性分类。以157个肺结节(51个良性,106个恶性)作为实验数据进行对比实验,结果显示:两种纹理描述子基于local jet变换空间提取的特征参数分别获得82.69%和86.54%的分类正确率,较原图像空间提高6%~8%,同时AUC值提高约10%。实验结果表明,基于local jet变换空间提取的纹理特征可以有效地改善肺结节良、恶性的模式识别。 展开更多
关键词 肺结节 local jet空间变换 纹理特征 模式识别
暂未订购
Feature Representation for Facial Expression Recognition Based on FACS and LBP 被引量:9
7
作者 Li Wang Rui-Feng Li +1 位作者 Ke Wang Jian Chen 《International Journal of Automation and computing》 EI CSCD 2014年第5期459-468,共10页
In expression recognition, feature representation is critical for successful recognition since it contains distinctive information of expressions. In this paper, a new approach for representing facial expression featu... In expression recognition, feature representation is critical for successful recognition since it contains distinctive information of expressions. In this paper, a new approach for representing facial expression features is proposed with its objective to describe features in an effective and efficient way in order to improve the recognition performance. The method combines the facial action coding system(FACS) and 'uniform' local binary patterns(LBP) to represent facial expression features from coarse to fine. The facial feature regions are extracted by active shape models(ASM) based on FACS to obtain the gray-level texture. Then, LBP is used to represent expression features for enhancing the discriminant. A facial expression recognition system is developed based on this feature extraction method by using K nearest neighborhood(K-NN) classifier to recognize facial expressions. Finally, experiments are carried out to evaluate this feature extraction method. The significance of removing the unrelated facial regions and enhancing the discrimination ability of expression features in the recognition process is indicated by the results, in addition to its convenience. 展开更多
关键词 local binary patterns (LBP) facial expression recognition active shape models (ASM) facial action coding system (FACS) feature representation
原文传递
基于LFP与RCD(G)特征的遥感图像车辆检测 被引量:3
8
作者 阳理理 陈雪云 陈家华 《广西大学学报(自然科学版)》 CAS 北大核心 2018年第5期1794-1802,共9页
为研究将区域协方差算子(regional covariance descriptors,RCD)用于高分辨率遥感图像中的车辆检测,提出了两种新的图像特征提取方法。针对原始RCD方法未能利用图像的二值信息的情况,提出了一种基于二值统计的局部特征模式(local featur... 为研究将区域协方差算子(regional covariance descriptors,RCD)用于高分辨率遥感图像中的车辆检测,提出了两种新的图像特征提取方法。针对原始RCD方法未能利用图像的二值信息的情况,提出了一种基于二值统计的局部特征模式(local feature pattern,LFP)方法。针对原始RCD方法中卷积核简单、方向单一的问题,设计了一种多尺度、多方向的正弦函数卷积核,提出了一种基于Gabor卷积核的RCD(G)方法。对比了各种方法用于车辆分类的准确率,结果表明,LFP方法的准确率和原始RCD方法差不多,而RCD(G)方法的准确率比原始RCD方法提高了1. 35%,准确率达到95. 25%。另外,LFP+RCD(G)方法的准确率比LFP+原始RCD方法高1. 75%,达到了96. 65%。 展开更多
关键词 区域协方差算子(RCD) 局部特征模式(lfp) 车辆检测
在线阅读 下载PDF
Retrieval of High Resolution Satellite Images Using Texture Features 被引量:1
9
作者 Samia Bouteldja Assia Kourgli 《Journal of Electronic Science and Technology》 CAS 2014年第2期211-215,共5页
In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture ... In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equally sized blocks, from which LBP histograms are extracted. The block histograms are then compared by using the Chi-square distance. Experimental results show that the LBP representation provides a powerful tool for high resolution satellite images (HRSI) retrieval. 展开更多
关键词 Content-based image retrieval high resolution satellite imagery local binary pattern texture feature extraction
在线阅读 下载PDF
Multi-Level Fusion in Ultrasound for Cancer Detection Based on Uniform LBP Features 被引量:1
10
作者 Diyar Qader Zeebaree Adnan Mohsin Abdulazeez +2 位作者 Dilovan Asaad Zebari Habibollah Haron Haza Nuzly Abdull Hamed 《Computers, Materials & Continua》 SCIE EI 2021年第3期3363-3382,共20页
Collective improvement in the acceptable or desirable accuracy level of breast cancer image-related pattern recognition using various schemes remains challenging.Despite the combination of multiple schemes to achieve ... Collective improvement in the acceptable or desirable accuracy level of breast cancer image-related pattern recognition using various schemes remains challenging.Despite the combination of multiple schemes to achieve superior ultrasound image pattern recognition by reducing the speckle noise,an enhanced technique is not achieved.The purpose of this study is to introduce a features-based fusion scheme based on enhancement uniform-Local Binary Pattern(LBP)and filtered noise reduction.To surmount the above limitations and achieve the aim of the study,a new descriptor that enhances the LBP features based on the new threshold has been proposed.This paper proposes a multi-level fusion scheme for the auto-classification of the static ultrasound images of breast cancer,which was attained in two stages.First,several images were generated from a single image using the pre-processing method.Themedian andWiener filterswere utilized to lessen the speckle noise and enhance the ultrasound image texture.This strategy allowed the extraction of a powerful feature by reducing the overlap between the benign and malignant image classes.Second,the fusion mechanism allowed the production of diverse features from different filtered images.The feasibility of using the LBP-based texture feature to categorize the ultrasound images was demonstrated.The effectiveness of the proposed scheme is tested on 250 ultrasound images comprising 100 and 150 benign and malignant images,respectively.The proposed method achieved very high accuracy(98%),sensitivity(98%),and specificity(99%).As a result,the fusion process that can help achieve a powerful decision based on different features produced from different filtered images improved the results of the new descriptor of LBP features in terms of accuracy,sensitivity,and specificity. 展开更多
关键词 Breast cancer ultrasound image local binary pattern feature extraction noise reduction filters FUSION
在线阅读 下载PDF
Hierarchical particle filter tracking algorithm based on multi-feature fusion 被引量:3
11
作者 Minggang Gan Yulong Cheng +1 位作者 Yanan Wang Jie Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期51-62,共12页
A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a ... A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a complicated environment.In this approach,the Harris algorithm is introduced to detect the corner points of the object,and the corner matching algorithm based on singular value decomposition is used to compute the firstorder weights and make particles centralize in the high likelihood area.Then the local binary pattern(LBP) operator is used to build the observation model of the target based on the color and texture features,by which the second-order weights of particles and the accurate location of the target can be obtained.Moreover,a backstepping controller is proposed to complete the whole tracking system.Simulations and experiments are carried out,and the results show that the HPF algorithm with the backstepping controller achieves stable and accurate tracking with good robustness in complex environments. 展开更多
关键词 particle filter corner matching multi-feature fusion local binary patterns(LBP) backstepping.
在线阅读 下载PDF
An automated detection of glaucoma using histogram features
12
作者 Karthikeyan Sakthivel Rengarajan Narayanan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2015年第1期194-200,共7页
Glaucoma is a chronic and progressive optic neurodegenerative disease leading to vision deterioration and in most cases produce increased pressure within the eye. This is due to the backup of fluid in the eye; it caus... Glaucoma is a chronic and progressive optic neurodegenerative disease leading to vision deterioration and in most cases produce increased pressure within the eye. This is due to the backup of fluid in the eye; it causes damage to the optic nerve. Hence, early detection diagnosis and treatment of an eye help to prevent the loss of vision. In this paper, a novel method is proposed for the early detection of glaucoma using a combination of magnitude and phase features from the digital fundus images. Local binary patterns(LBP) and Daugman’s algorithm are used to perform the feature set extraction.The histogram features are computed for both the magnitude and phase components. The Euclidean distance between the feature vectors are analyzed to predict glaucoma. The performance of the proposed method is compared with the higher order spectra(HOS)features in terms of sensitivity, specificity, classification accuracy and execution time. The proposed system results 95.45% output for sensitivity, specificity and classification. Also, the execution time for the proposed method takes lesser time than the existing method which is based on HOS features. Hence, the proposed system is accurate, reliable and robust than the existing approach to predict the glaucoma features. 展开更多
关键词 Daugman's algorithm Euclidean distance GLAUCOMA higher order spectra histogram features local binary patterns
原文传递
Product Image Classification Based on Fusion Features
13
作者 杨晓慧 刘静静 杨利军 《Chinese Quarterly Journal of Mathematics》 2015年第3期429-441,共13页
Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images cl... Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images classification system, is still low. In this paper, we propose a local texture descriptor termed fan refined local binary pattern, which captures more detailed information by integrating the spatial distribution into the local binary pattern feature. We compare our approach with different methods on a subset of product images on Amazon/e Bay and parts of PI100 and experimental results have demonstrated that our proposed approach is superior to the current existing methods. The highest classification precision is increased by 21% and the average classification time is reduced by 2/3. 展开更多
关键词 product image CLASSIFICATION FAN refined local binary pattern(FRLBP) PYRAMID HISTOGRAM of orientated gradients(PHOG) FUSION featureS
在线阅读 下载PDF
Enhanced Feature Fusion Segmentation for Tumor Detection Using Intelligent Techniques
14
作者 R.Radha R.Gopalakrishnan 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3113-3127,共15页
In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective... In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective cells precisely during the diagnosis phase helps tofight the greatest exterminator of mankind.Early detec-tion of these defective cells requires an accurate computer-aided diagnostic system(CAD)that supports early treatment and promotes survival rates of patients.An ear-lier version of CAD systems relies greatly on the expertise of radiologist and it con-sumed more time to identify the defective region.The manuscript takes the efficacy of coalescing features like intensity,shape,and texture of the magnetic resonance image(MRI).In the Enhanced Feature Fusion Segmentation based classification method(EEFS)the image is enhanced and segmented to extract the prominent fea-tures.To bring out the desired effect the EEFS method uses Enhanced Local Binary Pattern(EnLBP),Partisan Gray Level Co-occurrence Matrix Histogram of Oriented Gradients(PGLCMHOG),and iGrab cut method to segment image.These prominent features along with deep features are coalesced to provide a single-dimensional fea-ture vector that is effectively used for prediction.The coalesced vector is used with the existing classifiers to compare the results of these classifiers with that of the gen-erated vector.The generated vector provides promising results with commendably less computatio nal time for pre-processing and classification of MR medical images. 展开更多
关键词 Enhanced local binary pattern LEVEL iGrab cut method magnetic resonance image computer aided diagnostic system enhanced feature fusion segmentation enhanced local binary pattern
在线阅读 下载PDF
An enhanced PSO-DEFS based feature selection with biometric authentication for identi¯cation of diabetic retinopathy
15
作者 Umarani Balakrishnan Krishnamurthi Venkatachalapathy Girirajkumar S.Marimuthu 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2016年第6期35-49,共15页
Recently,automatic diagnosis of diabetic retinopathy(DR)from the retinal image is the most significant ressearch topic in the medical applications.Diabetic macular edema(DME)is the.major reason for the loss of vision ... Recently,automatic diagnosis of diabetic retinopathy(DR)from the retinal image is the most significant ressearch topic in the medical applications.Diabetic macular edema(DME)is the.major reason for the loss of vision in patients suffering fom DR.Early identification of the DR enables to prevent the vision loss and encourage diabetic control activities.Many techniques are.developed to diagnose the DR.The major drawbacks of the existing techniques are low accuracy and high time complexity.To owercome these issues,this paper propases an enhanced particle swarm optimization differential evolution feature selection(PSO DEFS)based feature selection approach with biometric aut hentication for the identification of DR.Initially,a hybrid median filter(HMF)is used for pre processing the input images.Then,the pre-processed images are embedded with each other by using least significant bit(LSB)for authentication purpose.Si-multaneously,the image features are extracted using convoluted local tetra pattern(CLTrP)and Tamura features.Feature selection is performed using PSO DEFS and PSO-gravitational search algorithm(PSO GSA)to reduce time complexity.Based on some performance metrics,the PSO-DEFS is chosen as a better choice for feature selection.The feature selection is performed based on the fitness value.A multi-relevance vector machine(M-RVM)is introduced to dlassify the 13 normal and 62 abnormal images among 75 images from 60 patients.Finally,the DR patients are further dassified by M-RVM.The experimental results exhibit that the proposed approach achieves better accuracy,sensitivity,and specificity than the exist ing techniques. 展开更多
关键词 Diabetic retinopathy(DR) least sigmificant bit(LSB) local tetra pattern(LTrP) optical coherence tomogr aphy(OCT) hybrid median filter(HMF) particle swarm optimization(PSO) differential evolution feature selection(DEFS).
原文传递
基于自适应反馈机制的小差异化图像纹理特征信息数据检索
16
作者 刘洋 毛克明 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期73-81,共9页
针对小差异化图像纹理相似度和噪声等因素导致纹理特征挖掘效果较差的问题,设计一种自适应反馈结合局部二值机制的小差异化图像纹理特征挖掘方法.使用规范割策略将图像数据各点拟作节点,使用节点间的连接线权重计算2点的相似度,采用支... 针对小差异化图像纹理相似度和噪声等因素导致纹理特征挖掘效果较差的问题,设计一种自适应反馈结合局部二值机制的小差异化图像纹理特征挖掘方法.使用规范割策略将图像数据各点拟作节点,使用节点间的连接线权重计算2点的相似度,采用支持向量机训练图像属性参数分类图像属性,进一步归纳图像类别.运用跳跃连接方法传输图像数据,将数据引入卷积神经网络剔除图像噪声.将中心点像素值当作反馈因子,创建自适应反馈判定条件,利用局部二值模式实现小差异化图像纹理特征挖掘.在MATLAB平台进行试验,从卷积神经网络收敛性、图像频谱纹理单元数、平均准确率、图像数据匹配度等方面进行了分析,分析结果表明:随着迭代次数不断增加,精度损失逐渐降低,基本收敛到稳定值,达到了预期训练效果;所提出方法挖掘的图像频谱纹理单元数3800个以上,更贴合人眼视觉信息;平均准确率为0.87,准确率@1、准确率@5和准确率@10的平均值分别为0.90、0.84和0.85;挖掘耗时低于5 s,图像数据匹配度高于90.3%,验证了所提出方法可在图像纹理特征识别操作中发挥应有作用. 展开更多
关键词 小差异化图像 纹理特征 数据挖掘 自适应反馈 属性分类 跳跃连接 局部二值模式 支持向量机
在线阅读 下载PDF
基于DRCoALTP的印刷体文档图像多文种识别方法 被引量:2
17
作者 吴正健 吾尔尼沙·买买提 +2 位作者 杨耀威 阿力木江·艾沙 库尔班·吾布力 《山东大学学报(工学版)》 北大核心 2025年第1期51-57,65,共8页
针对视觉结构类似导致的文种相似性问题,基于局部三值模式的相邻共生矩阵(co-occurrence of adjacent local ternary patterns,CoALTP)提出一种具有判别性和鲁棒性的局部三值模式的相邻共生矩阵(discriminant and robust co-occurrence ... 针对视觉结构类似导致的文种相似性问题,基于局部三值模式的相邻共生矩阵(co-occurrence of adjacent local ternary patterns,CoALTP)提出一种具有判别性和鲁棒性的局部三值模式的相邻共生矩阵(discriminant and robust co-occurrence of adjacent local ternary patterns,DRCoALTP)方法,用于获取图像纹理。计算文档图像的相邻稀疏局部三值模式(adjacent sparse local ternary patterns,ASLTP),将采样点数量设定为8,以便获得详细的局部纹理,设计出一种基于自适应中值滤波思想的半自适应阈值方法,用于提取灰度图像中心像素周边对角邻域像素的编码值。ASLTP在邻域像素位置存放稀疏局部三值模式(local ternary patterns,LTP)的值,提取灰度共生矩阵(gray-level co-occurrence matrix,GLCM),从4个方向统计使用ASLTP后灰度图像像素之间的频率关系。该算法在阿拉伯文、俄文、简体中文、哈萨克文、藏文、蒙古文、土耳其文、维吾尔文、英文、吉尔吉斯斯坦文和塔吉克斯坦文11个文种的自建印刷体文档图像数据集中验证。试验结果表明,相较于基线和先进的纹理方法,改进后的方法更具判别性,平均识别准确率为99.14%。为改善CoALTP方法可能产生低效分类特征的问题,提出半自适应阈值方法,有效提高识别率并抑制噪声。此外,针对算法产生的高维特征,采用基于均方差的特征选择方法,通过支持向量机(support vector machine,SVM)分类器特征选择后,识别速度提高284%,对11个文种的平均识别准确率达99.44%。 展开更多
关键词 稀疏局部三值模式 灰度共生矩阵 文种识别 半自适应阈值 特征选择
原文传递
基于分块高阶LDP的单样本掌纹识别 被引量:1
18
作者 郭金玉 赵翠霞 《沈阳大学学报(自然科学版)》 2025年第3期224-230,共7页
为了提高单样本生物特征识别的准确率,提出一种基于分块高阶局部导数模式(LDP)的单样本掌纹识别方法。首先,掌纹图像经过预处理提取感兴趣区域(ROI),并对ROI进行分块;然后,利用高阶LDP进行特征提取,将所有块的特征向量连接在一起形成一... 为了提高单样本生物特征识别的准确率,提出一种基于分块高阶局部导数模式(LDP)的单样本掌纹识别方法。首先,掌纹图像经过预处理提取感兴趣区域(ROI),并对ROI进行分块;然后,利用高阶LDP进行特征提取,将所有块的特征向量连接在一起形成一个全局的特征向量用于掌纹识别;最后,利用最近邻分类器进行掌纹识别。为了验证该方法的有效性,利用PloyU掌纹数据库和UST图像库进行仿真研究。仿真结果表明,与分块局部二值模式(LBP)和卷积神经网络(CNN)相比,该方法的识别率在2个图像库上均得到了提高。 展开更多
关键词 单样本掌纹识别 图像分块 特征提取 高阶局部导数模式 局部二值模式
在线阅读 下载PDF
基于局部自适应明暗模式的图像纹理特征提取方法
19
作者 李江美 陈熙 《激光杂志》 北大核心 2025年第7期101-110,共10页
局部二值模式(LBP)只考虑中心像素与不同方向上相邻像素间的明暗趋势,并不能精确提取不同方向上的明暗强度信息。此外,不同的图像结构处于相同的明暗区域时,也可能被编码为同一种模式。因此,为解决以上问题,提出一种基于局部明暗强度的... 局部二值模式(LBP)只考虑中心像素与不同方向上相邻像素间的明暗趋势,并不能精确提取不同方向上的明暗强度信息。此外,不同的图像结构处于相同的明暗区域时,也可能被编码为同一种模式。因此,为解决以上问题,提出一种基于局部明暗强度的图像局部纹理算法,即局部自适应明暗强度矢量二值模式,该算法由局部自适应明暗矢量模式和局部明暗强度模式两个特征分量组成。局部自适应明暗矢量模式在MxN窗口内计算不同方向上的正负平均矢量阈值,以此精确地提取每个中心像素周围不同方向上不同明暗强度特征;而局部明暗强度模式根据中心像素与相邻像素之间明暗程度进行排序编码,对于提取相同明暗区域的不同纹理特征更加有效。另外,为提高低分辨纹理图像的识别性能,建立多尺度纹理高斯金字塔进行特征融合。最后,使用随机森林和最近邻分类器在5个图像数据集上进行分类实验,实验验证了该算法的有效性。 展开更多
关键词 图像局部特征 局部自适应明暗强度矢量二值模式 多尺度高斯金字塔 图像特征融合 随机森林
原文传递
一种基于机器视觉的台区用电行为安全性检查技术 被引量:1
20
作者 杨宇坤 曹刚 刘倩如 《自动化技术与应用》 2025年第8期161-164,183,共5页
台区用电安全是电力公司关注的重点,一旦无法及时发现异常用电行为,将给电力公司造成严重的经济损失。为保证台区用电安全,研究一种基于机器视觉的台区用电行为安全性检查技术。研究中机器视觉设备——电荷耦合器件(charge-coupled devi... 台区用电安全是电力公司关注的重点,一旦无法及时发现异常用电行为,将给电力公司造成严重的经济损失。为保证台区用电安全,研究一种基于机器视觉的台区用电行为安全性检查技术。研究中机器视觉设备——电荷耦合器件(charge-coupled device,CCD)摄像头拍摄台区用电区域内来往人员行为图像并针对图像实施灰度变换和去噪两个步骤的预处理。提取用电行为机器视觉图像局部二值模式(local binary pattern,LBP)特征,以此为输入,利用改进径向基函数(radial basis function,RBF)神经网络算法实现用电行为安全检测。结果表明,其AUC值相对更大,说明所研究检查技术准确性更高,能更为准确地判断台区用电行为是否安全。 展开更多
关键词 机器视觉 用电行为 LBP特征 预处理 改进RBF神经网络算法 检查技术
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部