With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain s...With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain statistical features(NSSTds)and local three dimensional local ternary pattern(3D-LTP)features,is proposed for high-resolution remote sensing images.We model the NSST image coefficients of detail subbands using 2-state laplacian mixture(LM)distribution and its three parameters are estimated using Expectation-Maximization(EM)algorithm.We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation calculated from approximation subband,and concatenate all of them with the 2-state LM parameters to describe the global features of the image.The various properties of NSST such as multiscale,localization and flexible directional sensitivity make it a suitable choice to provide an effective approximation of an image.In order to extract the dense local features,a new 3D-LTP is proposed where dimension reduction is performed via selection of‘uniform’patterns.The 3D-LTP is calculated from spatial RGB planes of the input image.The proposed inter-channel 3D-LTP not only exploits the local texture information but the color information is captured too.Finally,a fused feature representation(NSSTds-3DLTP)is proposed using new global(NSSTds)and local(3D-LTP)features to enhance the discriminativeness of features.The retrieval performance of proposed NSSTds-3DLTP features are tested on three challenging remote sensing image datasets such as WHU-RS19,Aerial Image Dataset(AID)and PatternNet in terms of mean average precision(MAP),average normalized modified retrieval rank(ANMRR)and precision-recall(P-R)graph.The experimental results are encouraging and the NSSTds-3DLTP features leads to superior retrieval performance compared to many well known existing descriptors such as Gabor RGB,Granulometry,local binary pattern(LBP),Fisher vector(FV),vector of locally aggregated descriptors(VLAD)and median robust extended local binary pattern(MRELBP).For WHU-RS19 dataset,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{41.93%,20.87%},{92.30%,32.68%},{86.14%,31.97%},{18.18%,15.22%},{8.96%,19.60%}and{15.60%,13.26%},respectively.For AID,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{152.60%,22.06%},{226.65%,25.08%},{185.03%,23.33%},{80.06%,12.16%},{50.58%,10.49%}and{62.34%,3.24%},respectively.For PatternNet,the NSSTds-3DLTP respectively improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{32.79%,10.34%},{141.30%,24.72%},{17.47%,10.34%},{83.20%,19.07%},{21.56%,3.60%},and{19.30%,0.48%}in terms of{MAP,ANMRR}.The moderate dimensionality of simple NSSTds-3DLTP allows the system to run in real-time.展开更多
This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><...This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span>展开更多
Nowadays,analysis methods based on big data have been widely used in malicious software detection.Since Android has become the dominator of smartphone operating system market,the number of Android malicious applicatio...Nowadays,analysis methods based on big data have been widely used in malicious software detection.Since Android has become the dominator of smartphone operating system market,the number of Android malicious applications are increasing rapidly as well,which attracts attention of malware attackers and researchers alike.Due to the endless evolution of the malware,it is critical to apply the analysis methods based on machine learning to detect malwares and stop them from leakaging our privacy information.In this paper,we propose a novel Android malware detection method based on binary texture feature recognition by Local Binary Pattern and Principal Component Analysis,which can visualize malware and detect malware accurately.Also,our method analyzes malware binary directly without any decompiler,sandbox or virtual machines,which avoid time and resource consumption caused by decompiler or monitor in this process.Experimentation on 5127 benigns and 5560 malwares shows that we obtain a detection accuracy of 90%.展开更多
In expression recognition, feature representation is critical for successful recognition since it contains distinctive information of expressions. In this paper, a new approach for representing facial expression featu...In expression recognition, feature representation is critical for successful recognition since it contains distinctive information of expressions. In this paper, a new approach for representing facial expression features is proposed with its objective to describe features in an effective and efficient way in order to improve the recognition performance. The method combines the facial action coding system(FACS) and 'uniform' local binary patterns(LBP) to represent facial expression features from coarse to fine. The facial feature regions are extracted by active shape models(ASM) based on FACS to obtain the gray-level texture. Then, LBP is used to represent expression features for enhancing the discriminant. A facial expression recognition system is developed based on this feature extraction method by using K nearest neighborhood(K-NN) classifier to recognize facial expressions. Finally, experiments are carried out to evaluate this feature extraction method. The significance of removing the unrelated facial regions and enhancing the discrimination ability of expression features in the recognition process is indicated by the results, in addition to its convenience.展开更多
In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture ...In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equally sized blocks, from which LBP histograms are extracted. The block histograms are then compared by using the Chi-square distance. Experimental results show that the LBP representation provides a powerful tool for high resolution satellite images (HRSI) retrieval.展开更多
Collective improvement in the acceptable or desirable accuracy level of breast cancer image-related pattern recognition using various schemes remains challenging.Despite the combination of multiple schemes to achieve ...Collective improvement in the acceptable or desirable accuracy level of breast cancer image-related pattern recognition using various schemes remains challenging.Despite the combination of multiple schemes to achieve superior ultrasound image pattern recognition by reducing the speckle noise,an enhanced technique is not achieved.The purpose of this study is to introduce a features-based fusion scheme based on enhancement uniform-Local Binary Pattern(LBP)and filtered noise reduction.To surmount the above limitations and achieve the aim of the study,a new descriptor that enhances the LBP features based on the new threshold has been proposed.This paper proposes a multi-level fusion scheme for the auto-classification of the static ultrasound images of breast cancer,which was attained in two stages.First,several images were generated from a single image using the pre-processing method.Themedian andWiener filterswere utilized to lessen the speckle noise and enhance the ultrasound image texture.This strategy allowed the extraction of a powerful feature by reducing the overlap between the benign and malignant image classes.Second,the fusion mechanism allowed the production of diverse features from different filtered images.The feasibility of using the LBP-based texture feature to categorize the ultrasound images was demonstrated.The effectiveness of the proposed scheme is tested on 250 ultrasound images comprising 100 and 150 benign and malignant images,respectively.The proposed method achieved very high accuracy(98%),sensitivity(98%),and specificity(99%).As a result,the fusion process that can help achieve a powerful decision based on different features produced from different filtered images improved the results of the new descriptor of LBP features in terms of accuracy,sensitivity,and specificity.展开更多
A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a ...A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a complicated environment.In this approach,the Harris algorithm is introduced to detect the corner points of the object,and the corner matching algorithm based on singular value decomposition is used to compute the firstorder weights and make particles centralize in the high likelihood area.Then the local binary pattern(LBP) operator is used to build the observation model of the target based on the color and texture features,by which the second-order weights of particles and the accurate location of the target can be obtained.Moreover,a backstepping controller is proposed to complete the whole tracking system.Simulations and experiments are carried out,and the results show that the HPF algorithm with the backstepping controller achieves stable and accurate tracking with good robustness in complex environments.展开更多
Glaucoma is a chronic and progressive optic neurodegenerative disease leading to vision deterioration and in most cases produce increased pressure within the eye. This is due to the backup of fluid in the eye; it caus...Glaucoma is a chronic and progressive optic neurodegenerative disease leading to vision deterioration and in most cases produce increased pressure within the eye. This is due to the backup of fluid in the eye; it causes damage to the optic nerve. Hence, early detection diagnosis and treatment of an eye help to prevent the loss of vision. In this paper, a novel method is proposed for the early detection of glaucoma using a combination of magnitude and phase features from the digital fundus images. Local binary patterns(LBP) and Daugman’s algorithm are used to perform the feature set extraction.The histogram features are computed for both the magnitude and phase components. The Euclidean distance between the feature vectors are analyzed to predict glaucoma. The performance of the proposed method is compared with the higher order spectra(HOS)features in terms of sensitivity, specificity, classification accuracy and execution time. The proposed system results 95.45% output for sensitivity, specificity and classification. Also, the execution time for the proposed method takes lesser time than the existing method which is based on HOS features. Hence, the proposed system is accurate, reliable and robust than the existing approach to predict the glaucoma features.展开更多
Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images cl...Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images classification system, is still low. In this paper, we propose a local texture descriptor termed fan refined local binary pattern, which captures more detailed information by integrating the spatial distribution into the local binary pattern feature. We compare our approach with different methods on a subset of product images on Amazon/e Bay and parts of PI100 and experimental results have demonstrated that our proposed approach is superior to the current existing methods. The highest classification precision is increased by 21% and the average classification time is reduced by 2/3.展开更多
In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective...In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective cells precisely during the diagnosis phase helps tofight the greatest exterminator of mankind.Early detec-tion of these defective cells requires an accurate computer-aided diagnostic system(CAD)that supports early treatment and promotes survival rates of patients.An ear-lier version of CAD systems relies greatly on the expertise of radiologist and it con-sumed more time to identify the defective region.The manuscript takes the efficacy of coalescing features like intensity,shape,and texture of the magnetic resonance image(MRI).In the Enhanced Feature Fusion Segmentation based classification method(EEFS)the image is enhanced and segmented to extract the prominent fea-tures.To bring out the desired effect the EEFS method uses Enhanced Local Binary Pattern(EnLBP),Partisan Gray Level Co-occurrence Matrix Histogram of Oriented Gradients(PGLCMHOG),and iGrab cut method to segment image.These prominent features along with deep features are coalesced to provide a single-dimensional fea-ture vector that is effectively used for prediction.The coalesced vector is used with the existing classifiers to compare the results of these classifiers with that of the gen-erated vector.The generated vector provides promising results with commendably less computatio nal time for pre-processing and classification of MR medical images.展开更多
Recently,automatic diagnosis of diabetic retinopathy(DR)from the retinal image is the most significant ressearch topic in the medical applications.Diabetic macular edema(DME)is the.major reason for the loss of vision ...Recently,automatic diagnosis of diabetic retinopathy(DR)from the retinal image is the most significant ressearch topic in the medical applications.Diabetic macular edema(DME)is the.major reason for the loss of vision in patients suffering fom DR.Early identification of the DR enables to prevent the vision loss and encourage diabetic control activities.Many techniques are.developed to diagnose the DR.The major drawbacks of the existing techniques are low accuracy and high time complexity.To owercome these issues,this paper propases an enhanced particle swarm optimization differential evolution feature selection(PSO DEFS)based feature selection approach with biometric aut hentication for the identification of DR.Initially,a hybrid median filter(HMF)is used for pre processing the input images.Then,the pre-processed images are embedded with each other by using least significant bit(LSB)for authentication purpose.Si-multaneously,the image features are extracted using convoluted local tetra pattern(CLTrP)and Tamura features.Feature selection is performed using PSO DEFS and PSO-gravitational search algorithm(PSO GSA)to reduce time complexity.Based on some performance metrics,the PSO-DEFS is chosen as a better choice for feature selection.The feature selection is performed based on the fitness value.A multi-relevance vector machine(M-RVM)is introduced to dlassify the 13 normal and 62 abnormal images among 75 images from 60 patients.Finally,the DR patients are further dassified by M-RVM.The experimental results exhibit that the proposed approach achieves better accuracy,sensitivity,and specificity than the exist ing techniques.展开更多
针对视觉结构类似导致的文种相似性问题,基于局部三值模式的相邻共生矩阵(co-occurrence of adjacent local ternary patterns,CoALTP)提出一种具有判别性和鲁棒性的局部三值模式的相邻共生矩阵(discriminant and robust co-occurrence ...针对视觉结构类似导致的文种相似性问题,基于局部三值模式的相邻共生矩阵(co-occurrence of adjacent local ternary patterns,CoALTP)提出一种具有判别性和鲁棒性的局部三值模式的相邻共生矩阵(discriminant and robust co-occurrence of adjacent local ternary patterns,DRCoALTP)方法,用于获取图像纹理。计算文档图像的相邻稀疏局部三值模式(adjacent sparse local ternary patterns,ASLTP),将采样点数量设定为8,以便获得详细的局部纹理,设计出一种基于自适应中值滤波思想的半自适应阈值方法,用于提取灰度图像中心像素周边对角邻域像素的编码值。ASLTP在邻域像素位置存放稀疏局部三值模式(local ternary patterns,LTP)的值,提取灰度共生矩阵(gray-level co-occurrence matrix,GLCM),从4个方向统计使用ASLTP后灰度图像像素之间的频率关系。该算法在阿拉伯文、俄文、简体中文、哈萨克文、藏文、蒙古文、土耳其文、维吾尔文、英文、吉尔吉斯斯坦文和塔吉克斯坦文11个文种的自建印刷体文档图像数据集中验证。试验结果表明,相较于基线和先进的纹理方法,改进后的方法更具判别性,平均识别准确率为99.14%。为改善CoALTP方法可能产生低效分类特征的问题,提出半自适应阈值方法,有效提高识别率并抑制噪声。此外,针对算法产生的高维特征,采用基于均方差的特征选择方法,通过支持向量机(support vector machine,SVM)分类器特征选择后,识别速度提高284%,对11个文种的平均识别准确率达99.44%。展开更多
文摘With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain statistical features(NSSTds)and local three dimensional local ternary pattern(3D-LTP)features,is proposed for high-resolution remote sensing images.We model the NSST image coefficients of detail subbands using 2-state laplacian mixture(LM)distribution and its three parameters are estimated using Expectation-Maximization(EM)algorithm.We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation calculated from approximation subband,and concatenate all of them with the 2-state LM parameters to describe the global features of the image.The various properties of NSST such as multiscale,localization and flexible directional sensitivity make it a suitable choice to provide an effective approximation of an image.In order to extract the dense local features,a new 3D-LTP is proposed where dimension reduction is performed via selection of‘uniform’patterns.The 3D-LTP is calculated from spatial RGB planes of the input image.The proposed inter-channel 3D-LTP not only exploits the local texture information but the color information is captured too.Finally,a fused feature representation(NSSTds-3DLTP)is proposed using new global(NSSTds)and local(3D-LTP)features to enhance the discriminativeness of features.The retrieval performance of proposed NSSTds-3DLTP features are tested on three challenging remote sensing image datasets such as WHU-RS19,Aerial Image Dataset(AID)and PatternNet in terms of mean average precision(MAP),average normalized modified retrieval rank(ANMRR)and precision-recall(P-R)graph.The experimental results are encouraging and the NSSTds-3DLTP features leads to superior retrieval performance compared to many well known existing descriptors such as Gabor RGB,Granulometry,local binary pattern(LBP),Fisher vector(FV),vector of locally aggregated descriptors(VLAD)and median robust extended local binary pattern(MRELBP).For WHU-RS19 dataset,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{41.93%,20.87%},{92.30%,32.68%},{86.14%,31.97%},{18.18%,15.22%},{8.96%,19.60%}and{15.60%,13.26%},respectively.For AID,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{152.60%,22.06%},{226.65%,25.08%},{185.03%,23.33%},{80.06%,12.16%},{50.58%,10.49%}and{62.34%,3.24%},respectively.For PatternNet,the NSSTds-3DLTP respectively improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{32.79%,10.34%},{141.30%,24.72%},{17.47%,10.34%},{83.20%,19.07%},{21.56%,3.60%},and{19.30%,0.48%}in terms of{MAP,ANMRR}.The moderate dimensionality of simple NSSTds-3DLTP allows the system to run in real-time.
文摘This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span>
文摘Nowadays,analysis methods based on big data have been widely used in malicious software detection.Since Android has become the dominator of smartphone operating system market,the number of Android malicious applications are increasing rapidly as well,which attracts attention of malware attackers and researchers alike.Due to the endless evolution of the malware,it is critical to apply the analysis methods based on machine learning to detect malwares and stop them from leakaging our privacy information.In this paper,we propose a novel Android malware detection method based on binary texture feature recognition by Local Binary Pattern and Principal Component Analysis,which can visualize malware and detect malware accurately.Also,our method analyzes malware binary directly without any decompiler,sandbox or virtual machines,which avoid time and resource consumption caused by decompiler or monitor in this process.Experimentation on 5127 benigns and 5560 malwares shows that we obtain a detection accuracy of 90%.
基金supported by National Natural Science Foundation of China(No.61273339)
文摘In expression recognition, feature representation is critical for successful recognition since it contains distinctive information of expressions. In this paper, a new approach for representing facial expression features is proposed with its objective to describe features in an effective and efficient way in order to improve the recognition performance. The method combines the facial action coding system(FACS) and 'uniform' local binary patterns(LBP) to represent facial expression features from coarse to fine. The facial feature regions are extracted by active shape models(ASM) based on FACS to obtain the gray-level texture. Then, LBP is used to represent expression features for enhancing the discriminant. A facial expression recognition system is developed based on this feature extraction method by using K nearest neighborhood(K-NN) classifier to recognize facial expressions. Finally, experiments are carried out to evaluate this feature extraction method. The significance of removing the unrelated facial regions and enhancing the discrimination ability of expression features in the recognition process is indicated by the results, in addition to its convenience.
文摘In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equally sized blocks, from which LBP histograms are extracted. The block histograms are then compared by using the Chi-square distance. Experimental results show that the LBP representation provides a powerful tool for high resolution satellite images (HRSI) retrieval.
基金This research received funding from Duhok Polytechnic University.
文摘Collective improvement in the acceptable or desirable accuracy level of breast cancer image-related pattern recognition using various schemes remains challenging.Despite the combination of multiple schemes to achieve superior ultrasound image pattern recognition by reducing the speckle noise,an enhanced technique is not achieved.The purpose of this study is to introduce a features-based fusion scheme based on enhancement uniform-Local Binary Pattern(LBP)and filtered noise reduction.To surmount the above limitations and achieve the aim of the study,a new descriptor that enhances the LBP features based on the new threshold has been proposed.This paper proposes a multi-level fusion scheme for the auto-classification of the static ultrasound images of breast cancer,which was attained in two stages.First,several images were generated from a single image using the pre-processing method.Themedian andWiener filterswere utilized to lessen the speckle noise and enhance the ultrasound image texture.This strategy allowed the extraction of a powerful feature by reducing the overlap between the benign and malignant image classes.Second,the fusion mechanism allowed the production of diverse features from different filtered images.The feasibility of using the LBP-based texture feature to categorize the ultrasound images was demonstrated.The effectiveness of the proposed scheme is tested on 250 ultrasound images comprising 100 and 150 benign and malignant images,respectively.The proposed method achieved very high accuracy(98%),sensitivity(98%),and specificity(99%).As a result,the fusion process that can help achieve a powerful decision based on different features produced from different filtered images improved the results of the new descriptor of LBP features in terms of accuracy,sensitivity,and specificity.
基金supported by the National Natural Science Foundation of China(61304097)the Projects of Major International(Regional)Joint Research Program NSFC(61120106010)the Foundation for Innovation Research Groups of the National National Natural Science Foundation of China(61321002)
文摘A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a complicated environment.In this approach,the Harris algorithm is introduced to detect the corner points of the object,and the corner matching algorithm based on singular value decomposition is used to compute the firstorder weights and make particles centralize in the high likelihood area.Then the local binary pattern(LBP) operator is used to build the observation model of the target based on the color and texture features,by which the second-order weights of particles and the accurate location of the target can be obtained.Moreover,a backstepping controller is proposed to complete the whole tracking system.Simulations and experiments are carried out,and the results show that the HPF algorithm with the backstepping controller achieves stable and accurate tracking with good robustness in complex environments.
文摘Glaucoma is a chronic and progressive optic neurodegenerative disease leading to vision deterioration and in most cases produce increased pressure within the eye. This is due to the backup of fluid in the eye; it causes damage to the optic nerve. Hence, early detection diagnosis and treatment of an eye help to prevent the loss of vision. In this paper, a novel method is proposed for the early detection of glaucoma using a combination of magnitude and phase features from the digital fundus images. Local binary patterns(LBP) and Daugman’s algorithm are used to perform the feature set extraction.The histogram features are computed for both the magnitude and phase components. The Euclidean distance between the feature vectors are analyzed to predict glaucoma. The performance of the proposed method is compared with the higher order spectra(HOS)features in terms of sensitivity, specificity, classification accuracy and execution time. The proposed system results 95.45% output for sensitivity, specificity and classification. Also, the execution time for the proposed method takes lesser time than the existing method which is based on HOS features. Hence, the proposed system is accurate, reliable and robust than the existing approach to predict the glaucoma features.
基金Supported by the National Natural Science Foundation of China(60802061, 11426087) Supported by Key Project of Science and Technology of the Education Department Henan Province(14A120009)+1 种基金 Supported by the Program of Henan Province Young Scholar(2013GGJS-027) Supported by the Research Foundation of Henan University(2013YBZR016)
文摘Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images classification system, is still low. In this paper, we propose a local texture descriptor termed fan refined local binary pattern, which captures more detailed information by integrating the spatial distribution into the local binary pattern feature. We compare our approach with different methods on a subset of product images on Amazon/e Bay and parts of PI100 and experimental results have demonstrated that our proposed approach is superior to the current existing methods. The highest classification precision is increased by 21% and the average classification time is reduced by 2/3.
文摘In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective cells precisely during the diagnosis phase helps tofight the greatest exterminator of mankind.Early detec-tion of these defective cells requires an accurate computer-aided diagnostic system(CAD)that supports early treatment and promotes survival rates of patients.An ear-lier version of CAD systems relies greatly on the expertise of radiologist and it con-sumed more time to identify the defective region.The manuscript takes the efficacy of coalescing features like intensity,shape,and texture of the magnetic resonance image(MRI).In the Enhanced Feature Fusion Segmentation based classification method(EEFS)the image is enhanced and segmented to extract the prominent fea-tures.To bring out the desired effect the EEFS method uses Enhanced Local Binary Pattern(EnLBP),Partisan Gray Level Co-occurrence Matrix Histogram of Oriented Gradients(PGLCMHOG),and iGrab cut method to segment image.These prominent features along with deep features are coalesced to provide a single-dimensional fea-ture vector that is effectively used for prediction.The coalesced vector is used with the existing classifiers to compare the results of these classifiers with that of the gen-erated vector.The generated vector provides promising results with commendably less computatio nal time for pre-processing and classification of MR medical images.
文摘Recently,automatic diagnosis of diabetic retinopathy(DR)from the retinal image is the most significant ressearch topic in the medical applications.Diabetic macular edema(DME)is the.major reason for the loss of vision in patients suffering fom DR.Early identification of the DR enables to prevent the vision loss and encourage diabetic control activities.Many techniques are.developed to diagnose the DR.The major drawbacks of the existing techniques are low accuracy and high time complexity.To owercome these issues,this paper propases an enhanced particle swarm optimization differential evolution feature selection(PSO DEFS)based feature selection approach with biometric aut hentication for the identification of DR.Initially,a hybrid median filter(HMF)is used for pre processing the input images.Then,the pre-processed images are embedded with each other by using least significant bit(LSB)for authentication purpose.Si-multaneously,the image features are extracted using convoluted local tetra pattern(CLTrP)and Tamura features.Feature selection is performed using PSO DEFS and PSO-gravitational search algorithm(PSO GSA)to reduce time complexity.Based on some performance metrics,the PSO-DEFS is chosen as a better choice for feature selection.The feature selection is performed based on the fitness value.A multi-relevance vector machine(M-RVM)is introduced to dlassify the 13 normal and 62 abnormal images among 75 images from 60 patients.Finally,the DR patients are further dassified by M-RVM.The experimental results exhibit that the proposed approach achieves better accuracy,sensitivity,and specificity than the exist ing techniques.
文摘针对视觉结构类似导致的文种相似性问题,基于局部三值模式的相邻共生矩阵(co-occurrence of adjacent local ternary patterns,CoALTP)提出一种具有判别性和鲁棒性的局部三值模式的相邻共生矩阵(discriminant and robust co-occurrence of adjacent local ternary patterns,DRCoALTP)方法,用于获取图像纹理。计算文档图像的相邻稀疏局部三值模式(adjacent sparse local ternary patterns,ASLTP),将采样点数量设定为8,以便获得详细的局部纹理,设计出一种基于自适应中值滤波思想的半自适应阈值方法,用于提取灰度图像中心像素周边对角邻域像素的编码值。ASLTP在邻域像素位置存放稀疏局部三值模式(local ternary patterns,LTP)的值,提取灰度共生矩阵(gray-level co-occurrence matrix,GLCM),从4个方向统计使用ASLTP后灰度图像像素之间的频率关系。该算法在阿拉伯文、俄文、简体中文、哈萨克文、藏文、蒙古文、土耳其文、维吾尔文、英文、吉尔吉斯斯坦文和塔吉克斯坦文11个文种的自建印刷体文档图像数据集中验证。试验结果表明,相较于基线和先进的纹理方法,改进后的方法更具判别性,平均识别准确率为99.14%。为改善CoALTP方法可能产生低效分类特征的问题,提出半自适应阈值方法,有效提高识别率并抑制噪声。此外,针对算法产生的高维特征,采用基于均方差的特征选择方法,通过支持向量机(support vector machine,SVM)分类器特征选择后,识别速度提高284%,对11个文种的平均识别准确率达99.44%。