In this article,we study the initial boundary value problem of the two-dimensional nonhomogeneous incompressible primitive equations and obtain the local existence and uniqueness of strong solutions.The initial vacuum...In this article,we study the initial boundary value problem of the two-dimensional nonhomogeneous incompressible primitive equations and obtain the local existence and uniqueness of strong solutions.The initial vacuum is allowed.展开更多
This article is concerned with the 3 D nonhomogeneous incompressible magnetohydrodynamics equations with a slip boundary conditions in bounded domain.We obtain weighted estimates of the velocity and magnetic field,and...This article is concerned with the 3 D nonhomogeneous incompressible magnetohydrodynamics equations with a slip boundary conditions in bounded domain.We obtain weighted estimates of the velocity and magnetic field,and address the issue of local existence and uniqueness of strong solutions with the weaker initial data which contains vacuum states.展开更多
Pure initial value problems for important nonlinear evolution equations such as nonlinear Schrödinger equation (NLS) and the Ginzburg-Landau equation (GL) have been extensively studied. However, many applicat...Pure initial value problems for important nonlinear evolution equations such as nonlinear Schrödinger equation (NLS) and the Ginzburg-Landau equation (GL) have been extensively studied. However, many applications in physics lead to mathematical models where boundary data is inhomogeneous, e.g. in radio frequency wave experiments. In this paper, we investigate the mixed initial-boundary condition problem for the nonlinear Schrödinger equation iu<sub>t</sub> = u<sub>xx</sub> – g|u|<sup>p-1</sup>u, g ∈R, p > 3 on a semi-infinite strip. The equation satisfies an initial condition and Dirichlet boundary conditions. We utilize semi-group theory to prove existence and uniqueness theorem of a strong local solution.展开更多
基金partially supported by the National Natural Science Foundation of China (11671273 and 11931010)key research project of the Academy for Multidisciplinary Studies of CNU and Beijing Natural Science Foundation (1192001).
文摘In this article,we study the initial boundary value problem of the two-dimensional nonhomogeneous incompressible primitive equations and obtain the local existence and uniqueness of strong solutions.The initial vacuum is allowed.
基金This work was supported by Natural Science Foundation of China(11871412).
文摘This article is concerned with the 3 D nonhomogeneous incompressible magnetohydrodynamics equations with a slip boundary conditions in bounded domain.We obtain weighted estimates of the velocity and magnetic field,and address the issue of local existence and uniqueness of strong solutions with the weaker initial data which contains vacuum states.
文摘Pure initial value problems for important nonlinear evolution equations such as nonlinear Schrödinger equation (NLS) and the Ginzburg-Landau equation (GL) have been extensively studied. However, many applications in physics lead to mathematical models where boundary data is inhomogeneous, e.g. in radio frequency wave experiments. In this paper, we investigate the mixed initial-boundary condition problem for the nonlinear Schrödinger equation iu<sub>t</sub> = u<sub>xx</sub> – g|u|<sup>p-1</sup>u, g ∈R, p > 3 on a semi-infinite strip. The equation satisfies an initial condition and Dirichlet boundary conditions. We utilize semi-group theory to prove existence and uniqueness theorem of a strong local solution.