In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):104...In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].展开更多
Laser-welded Ti-6Al-4 V is prone to severe residual stresses,microstructural variation,and structural de-fects which are known detrimental to the mechanical properties of weld joints.Residual stress removal is typical...Laser-welded Ti-6Al-4 V is prone to severe residual stresses,microstructural variation,and structural de-fects which are known detrimental to the mechanical properties of weld joints.Residual stress removal is typically applied to weld joints for engineering purposes via heat treatment,in order to avoid prema-ture failure and performance degradation.In the present work,we found that proper welding residual stresses in laser-welded Ti-6Al-4 V sheets can maintain better ductility during uniaxial tension,as op-posed to the stress-relieved counterparts.A detailed experimental investigation has been performed on the deformation behaviours of Ti-6Al-4 V butt welds,including residual stress distribution characteriza-tions by focused ion beam ring-coring coupled with digital image correlation(FIB-DIC),X-ray comput-erized tomography(CT)for internal voids,and in-situ DIC analysis of the subregional strain evolutions.It was found that the pores preferentially distributed near the fusion zone(FZ)boundary,where the compressive residual stress was up to-330 MPa.The removal of residual stress resulted in a changed failure initiation site from the base material to the FZ boundary,the former with ductile and the latter with brittle fracture characteristics under tensile deformation.The combined effects of residual stresses,microstructures,and internal pores on the mechanical responses are discussed in detail.This work high-lights the importance of inevitable residual stress and pores in laser weld pieces,leading to key insights for post-welding treatment and service performance evaluations.展开更多
A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,...A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,it exhibits a good combination of yield strength(roughly 1300 MPa)and ductility(approach-ing 20%).Firstly,a multi-phase heterogeneous structure is tailored ranging from nano to micron.Cu is efficiently precipitated as nanoscale clusters(4.2 nm),high-density cuboidal L1_(2) particles(20-40 nm)and L2_(1) particles(500-800 nm)are found to be embedded in the matrix and a bimodal heterogeneous grain structure(1-40μm)is constructed.Secondly,the introduction of Cu effectively suppresses the pre-cipitation of coarse L21 phase at grain boundaries,reducing its volume fraction by 80%and replaced by smaller-scale continuous precipitations within the grains.Thirdly,the high mixing enthalpy gap of Cu and the matrix leads to the formation of local chemical fluctuation and the consequential rugged topog-raphy in the matrix,which result in retarded dislocation motion and promotes dislocation plugging and interlocking during strain,enhancing yield stress and work hardening rate.This study provides a valuable perspective to enhance strength and ductility via enlarged local chemical fluctuation-tailored multi-phase heterogeneous structures.展开更多
Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accu...Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods. Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy. Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2, Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%, 29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies the importance of inter-class dependencies through ablation experiments.展开更多
The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to indus...The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.展开更多
Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environ...Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.展开更多
We show that the torsion module Tor_(j)^(R)(R/a,H_(a)^(i)(X))is in a Serre subcategory for the bounded below R-complex X.In addition,we prove the isomorphism Tor_(s-t)^(R)(R/a,X)≅Tor_(s)^(R)(R/a,H_(a)^(t)(X))in some c...We show that the torsion module Tor_(j)^(R)(R/a,H_(a)^(i)(X))is in a Serre subcategory for the bounded below R-complex X.In addition,we prove the isomorphism Tor_(s-t)^(R)(R/a,X)≅Tor_(s)^(R)(R/a,H_(a)^(t)(X))in some case.As an application,the Betti number of a complex X in a prime ideal p can be computed by the Betti number of the local cohomology modules of X in p.展开更多
Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field c...Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field coupled with chloride ions(Cl-)fixation strategy in dual single-atom catalysts(DSACs)was proposed,and the resultant catalyst delivered considerable ORR performance in a seawater electrolyte,with a high half-wave potential(E_(1/2))of 0.868 V and a good maximum power density(Pmax)of 182 mW·cm^(−2)in the assembled SZABs,much higher than those of the Pt/C catalyst(E_(1/2):0.846 V;Pmax:150 mW·cm^(−2)).The in-situ characterization and theoretical calculations revealed that the Fe sites have a higher Cl^(−)adsorption affinity than the Co sites,and preferentially adsorbs Cl^(−)in a seawater electrolyte during the ORR process,and thus constructs a low-concentration Cl^(−)local microenvironment through the common-ion exclusion effect,which prevents Cl^(−)adsorption and corrosion in the Co active centers,achieving impressive catalytic stability.In addition,the directional charge movement between Fe and Co atomic pairs establishes a local electric field,optimizing the adsorption energy of Co sites for oxygen-containing intermediates,and further improving the ORR activity.展开更多
Objective:To analyze the efficacy of whole-course local simultaneous integrated boost intensity-modulated radiotherapy(SIB-IMRT)on patients with locally advanced esophageal squamous cell carcinoma(ESCC).Methods:88 pat...Objective:To analyze the efficacy of whole-course local simultaneous integrated boost intensity-modulated radiotherapy(SIB-IMRT)on patients with locally advanced esophageal squamous cell carcinoma(ESCC).Methods:88 patients with ESCC admitted to the hospital between October 2022 and October 2024 were selected and randomly divided into two groups using a random number table.The experimental group received SIB-IMRT treatment,while the control group received conventional intensity-modulated radiotherapy(C-IMRT).The objective remission rate,immune function,tumor markers,and adverse reaction rate were compared between the two groups.Results:The objective remission rate in the experimental group was higher than that in the control group(P<0.05).Before treatment,there was no difference in immune function levels and tumor marker levels between the two groups(P>0.05).After treatment,the immune function levels in the experimental group were better than those in the control group,and the tumor marker levels were lower than those in the control group(P<0.05).The adverse reaction rate in the experimental group was lower than that in the control group(P<0.05).Conclusion:SIB-IMRT can improve the objective remission rate of patients with ESCC,protect their immune function,down-regulate tumor marker levels,and prevent side effects after treatment.展开更多
Deconvolution methods are commonly used to improve the performance of phased array beamforming for sound source localization. However, for coherent sources localization, existing deconvolution methods are either highl...Deconvolution methods are commonly used to improve the performance of phased array beamforming for sound source localization. However, for coherent sources localization, existing deconvolution methods are either highly computationally demanding or sensitive to parameters.A deconvolution method, based on modifications of Clean based on Source Coherence(CLEAN-SC), is proposed for coherent sources localization. This method is called Coherence CLEAN-SC(C–CLEAN-SC). C–CLEAN-SC is able to locate coherent and incoherent sources in simulation and experimental cases. It has a high computational efficiency and does not require pre-set parameters.展开更多
Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localizatio...Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance.展开更多
Malaria is a potentially lethal disease caused by parasites of the Plasmodium genus, transmitted to humans through the bite of infected female mosquitoes, primarily Anopheles. To control this disease, various strategi...Malaria is a potentially lethal disease caused by parasites of the Plasmodium genus, transmitted to humans through the bite of infected female mosquitoes, primarily Anopheles. To control this disease, various strategies are implemented, including biological control, which targets the vectors of the parasite. This approach uses biological agents such as entomopathogenic fungi, including Metarhizium pingshaense, a fungus capable of causing lethal infections in mosquitoes. The production of Metarhizium pingshaense is still limited in Burkina Faso, and local cultivation of this fungus could help fill this gap. A study was conducted to identify optimal local substrates that promote its growth. Indeed, after gathering information on the dietary habits of populations in Bobo-Dioulasso and Bama, three potential substrates were selected: rice, cornmeal dough (MFL), and beans. These substrates were inoculated with two strains of Metarhizium pingshaense (S10 and S26) to assess their ability to support fungal growth and their effectiveness. Experimental results showed that MFL and bean substrates favored optimal growth of Metarhizium pingshaense, with growths of 1.91 cm and 2.13 cm after 8 days, compared to 1.83 cm on a standard media (PDA). In terms of virulence, S26 strain caused 60% mosquito mortality on both the bean and PDA media, while S10 strain induced mortalities of 50% for bean and 62% for PDA.展开更多
BACKGROUND Small-bowel capsule endoscopy(SBCE)is widely used to evaluate obscure gastrointestinal bleeding;however,its interpretation is time-consuming and reader-dependent.Although artificial intelligence(AI)has emer...BACKGROUND Small-bowel capsule endoscopy(SBCE)is widely used to evaluate obscure gastrointestinal bleeding;however,its interpretation is time-consuming and reader-dependent.Although artificial intelligence(AI)has emerged to address these limitations,few models simultaneously perform small-bowel(SB)loca lization and abnormality detection.AIMTo develop an AI model that automatically distinguishes the SB from the stomach and colon and diagnoses SBabnormalities.METHODSWe developed an AI model using 87005 CE images (11925, 33781, and 41299 from the stomach, SB, and colon,respectively) for SB localization and 28405 SBCE images (1337 erosions/ulcers, 126 angiodysplasia, 494 bleeding,and 26448 normal) for abnormality detection. The diagnostic performances of AI-assisted reading and conventionalreading were compared using 32 SBCE videos in patients with suspicious SB bleeding.RESULTSRegarding organ localization, the AI model achieved an area under the receiver operating characteristic curve(AUC) and accuracy exceeding 0.99 and 97%, respectively. For SB abnormality detection, the performance was asfollows: Erosion/ulcer: 99.4% accuracy (AUC, 0.98);angiodysplasia: 99.8% accuracy (AUC, 0.99);bleeding: 99.9%accuracy (AUC, 0.99);normal: 99.3% accuracy (AUC, 0.98). In external validation, AI-assisted reading (8.7 minutes)was significantly faster than conventional reading (53.9 minutes;P < 0.001). The SB localization accuracies (88.6% vs72.7%, P = 0.07) and SB abnormality detection rates (77.3% vs 77.3%, P = 1.00) of the conventional reading and AIassistedreading were comparable.CONCLUSIONOur AI model decreased SBCE reading time and achieved performance comparable to that of experiencedendoscopists, suggesting that AI integration into SBCE reading enables efficient and reliable SB abnormalitydetection.展开更多
A lightweight composite resonator,consisting of a soft material acoustic black hole(SABH)and multiple vibration absorbers,is embedded in a plate to achieve localization and absorption of low-frequency vibration energy...A lightweight composite resonator,consisting of a soft material acoustic black hole(SABH)and multiple vibration absorbers,is embedded in a plate to achieve localization and absorption of low-frequency vibration energy.The combination of local and global admissible functions for displacement enhances the accuracy of the Ritz method in predicting vibration localization characteristics within the SABH domain.Utilizing soft materials for the SABH can reduce the mass and frequency of the composite resonator.Due to the lack of orthogonality between global vibration modes and localized modes,the low-frequency localized modes induced by the SABH are used to shape the initial global modes,thereby concentrating the global vibration of the plate in the SABH region.Consequently,the absorbers of the composite resonator only need to be a small fraction of the mass of the local SABH to achieve substantial vibration control of the host plate.This vibration localization strategy can significantly reduce the vibration amplitude of the host plate and enhance the effectiveness of lightweight absorbers in vibration reduction.展开更多
BACKGROUND Coagulation status is closely related to the progression of malignant tumors.In the era of neoadjuvant immunochemotherapy(NICT),the prognostic utility of coagulation indicators in patients with locally adva...BACKGROUND Coagulation status is closely related to the progression of malignant tumors.In the era of neoadjuvant immunochemotherapy(NICT),the prognostic utility of coagulation indicators in patients with locally advanced gastric cancer(LAGC)undergoing new treatments remains to be determined.AIM To determine whether hypercoagulation is an effective prognostic indicator in patients with LAGC who underwent radical resection after NICT.METHODS A retrospective analysis of clinical data from 104 patients with LAGC,who underwent radical resection after NICT between 2020 and 2023,was performed.Ddimer and fibrinogen concentrations were measured one week before NICT,and again one week before surgery,to analyze the association between these two indicators and their combined indices[non-hypercoagulation(D-dimer and fibrinogen concentrations within the upper limit of normal)vs hypercoagulation(D-dimer or fibrinogen concentrations above the upper limit of normal)]with prognosis.After radical resection,patients were followed-up periodically.The median follow-up duration was 21 months.RESULTS Data collected after NICT revealed that the three-year overall survival(OS)and disease-free survival(DFS)rates the non-hypercoagulation group were significantly better than those in the hypercoagulation group[94.4%vs 78.0%(P=0.019)and 87.0%vs 68.0%(P=0.027),respectively].Multivariate analysis indicated that hypercoagulation after NICT was an independent factor for poor postoperative OS[hazard ratio(HR)4.436,P=0.023]and DFS(HR 2.551,P=0.039).Pre-NICT data demonstrated no statistically significant difference in three-year OS between the non-hypercoagulation and hypercoagulation groups(88.3%vs 84.1%,respectively;P=0.443).CONCLUSION Hypercoagulation after NICT is an effective prognostic indicator in patients with LAGC undergoing radical gastrectomy.展开更多
In existing image manipulation localization methods,the receptive field of standard convolution is limited,and during feature transfer,it is easy to lose high-frequency information about traces of manipulation.In addi...In existing image manipulation localization methods,the receptive field of standard convolution is limited,and during feature transfer,it is easy to lose high-frequency information about traces of manipulation.In addition,during feature fusion,the use of fixed sampling kernels makes it difficult to focus on local changes in features,leading to limited localization accuracy.This paper proposes an image manipulation localization method based on dual-branch hybrid convolution.First,a dual-branch hybrid convolution module is designed to expand the receptive field of the model to enhance the feature extraction ability of contextual semantic information,while also enabling the model to focus more on the high-frequency detail features of manipulation traces while localizing the manipulated area.Second,a multiscale content-aware feature fusion module is used to dynamically generate adaptive sampling kernels for each position in the feature map,enabling the model to focus more on the details of local features while locating the manipulated area.Experimental results on multiple datasets show that this method not only effectively improves the accuracy of image manipulation localization but also enhances the robustness of the model.展开更多
A novel characterization method for full-matrix constants of PzT-8 piezoceramics based on local electrodes excitation using one sample is proposed to avoid resonant peaks missing and overlapping in the inversion proce...A novel characterization method for full-matrix constants of PzT-8 piezoceramics based on local electrodes excitation using one sample is proposed to avoid resonant peaks missing and overlapping in the inversion process of resonant ultrasound spectroscopy technology.Elastic matrix,which is sensitive to the resonance spectrum,is obtained by resonant ultrasound spectroscopy.Piezoelectric and dielectric matrices,which are sensitive to the capacitance of driving electrodes,are determined by capacitance inversion.The initial values of elastic constants are deviated by 30%to validate the reliability of this method.The relative errors between measured and inversed values of resonant frequencies are less than 1%and the relative errors of the capacitance are mostly less than 5%.The work has extensive applications in piezoelectric materials characterization.展开更多
Autosamplers are indispensable key equipment in modern laboratories,playing a pivotal role in fields such as biomedicine,environmental monitoring,food safety,and materials science.However,domestic autosampler enterpri...Autosamplers are indispensable key equipment in modern laboratories,playing a pivotal role in fields such as biomedicine,environmental monitoring,food safety,and materials science.However,domestic autosampler enterprises are facing formidable challenges,confronted by the technological barriers and brand dominance of international giants,as well as increasingly fierce homogeneous competition in the domestic market.This article aims to thoroughly analyze the current market landscape and,based on seven key dimensions—strategic positioning,product technology,sales channels,brand building,service and support,supply chain optimization,and talent development—propose a series of effective market-winning strategies.This will provide theoretical guidance and practical reference for domestic autosampler enterprises to achieve breakthroughs and sustainable development amidst fierce market competition.展开更多
Corrosion poses a major threat to the safety of transportation pipelines.Therefore,it is crucial to have an in-depth understanding of corrosion mechanisms in pipeline steels for the effective management of pipeline in...Corrosion poses a major threat to the safety of transportation pipelines.Therefore,it is crucial to have an in-depth understanding of corrosion mechanisms in pipeline steels for the effective management of pipeline integrity.Conducting research on corrosion mechanisms relies on the use of efficient and reliable corrosion monitoring and analysis techniques.The advancements in corrosion monitoring techniques specifically designed for the localized corrosion monitoring were aimed to be introduced,and a comprehensive overview of recent progress in understanding the localized corrosion mechanisms in pipeline steels was provided.Based on the different corrosive environments encountered,the localized corrosion issues inside pipelines are classified into two categories:localized corrosion primarily influenced by electrochemical processes and localized corrosion controlled by both electrochemical and mechanical factors.Additionally,a thorough analysis of the synergistic effects between micro-cell and macro-cell currents,as well as the interplay of mechanics and electrochemistry is presented.Finally,recommendations for future research on the mechanisms of internal localized corrosion in pipelines are provided.展开更多
The recognition and monitoring of localized corrosion at the early stage on the inner wall surface of pipes are extremely difficult and simultaneously the reliable approach for recognition and monitoring is missing.He...The recognition and monitoring of localized corrosion at the early stage on the inner wall surface of pipes are extremely difficult and simultaneously the reliable approach for recognition and monitoring is missing.Here we report a spatially resolved method to recognize and monitor the localized corrosion in a non-destructive way based on the permeating hydrogen signal generated from localized corrosion itself.A simulative localized corrosion was created on one side surface of the carbon steel specimen where a dot of wet elemental sulfur was introduced to accelerate the corrosion on the local region.While,the potential on the other side surface(the reverse side of the corrosion site)of the specimen was measured using a scanning Kelvin probe.The results show that the permeating hydrogen generated from localized corrosion easily arrives on the reverse side surface of the corrosion site and then causes a huge change in surface potential.The location resolution of potential distribution can be revealed with micron level.Therefore,it is thought that the location of localized corrosion can be recognized by the permeating hydrogen signal distribution on the reverse side surface of the corrosion site since the region of potential decreasing is highly corresponding to the corrosion site.Moreover,the strength of the permeating hydrogen signal is highly related to the corrosion depth and transient corrosion rate of localized corrosion.This means that the localized corrosion development can also be monitored using the permeating hydrogen signal.Therefore,it can be expected that the localized corrosion occurring on the inner wall surface of pipes or equipment can be recognized and monitored successfully on the outer wall surface in a non-destructive way once the permeating hydrogen is present during the localized corrosion proceeding.展开更多
基金Supported by NSFC(Nos.11661025,12161024)Natural Science Foundation of Guangxi(Nos.2020GXNSFAA159118,2021GXNSFAA196045)+2 种基金Guangxi Science and Technology Project(No.Guike AD20297006)Training Program for 1000 Young and Middle-aged Cadre Teachers in Universities of GuangxiNational College Student's Innovation and Entrepreneurship Training Program(No.202110595049)。
文摘In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].
基金supported by the National Key Re-search&Development Plan of China(No.2020YFA0405900)the Major Research Plan of the National Natural Science Founda-tion of China(No.92263201)Y.P.Xia would like to thank the support by the Jiangsu Funding Program for Excellent Postdoctoral Talent.All authors thank the Advanced Material Research Institute of Jiangsu Industrial Technology Research Institute(JITRI,Suzhou,China)for the experimental support.
文摘Laser-welded Ti-6Al-4 V is prone to severe residual stresses,microstructural variation,and structural de-fects which are known detrimental to the mechanical properties of weld joints.Residual stress removal is typically applied to weld joints for engineering purposes via heat treatment,in order to avoid prema-ture failure and performance degradation.In the present work,we found that proper welding residual stresses in laser-welded Ti-6Al-4 V sheets can maintain better ductility during uniaxial tension,as op-posed to the stress-relieved counterparts.A detailed experimental investigation has been performed on the deformation behaviours of Ti-6Al-4 V butt welds,including residual stress distribution characteriza-tions by focused ion beam ring-coring coupled with digital image correlation(FIB-DIC),X-ray comput-erized tomography(CT)for internal voids,and in-situ DIC analysis of the subregional strain evolutions.It was found that the pores preferentially distributed near the fusion zone(FZ)boundary,where the compressive residual stress was up to-330 MPa.The removal of residual stress resulted in a changed failure initiation site from the base material to the FZ boundary,the former with ductile and the latter with brittle fracture characteristics under tensile deformation.The combined effects of residual stresses,microstructures,and internal pores on the mechanical responses are discussed in detail.This work high-lights the importance of inevitable residual stress and pores in laser weld pieces,leading to key insights for post-welding treatment and service performance evaluations.
基金financial support from the National Natural Science Foundation of China(Nos.52104306,52274301,52334009)the Aeronautical Science Foundation of China(No.2023Z0530S6005)+3 种基金the National Key Research and Development Program of China(No.2023YFB3712401)the Science and Technology Commission of Shanghai Municipality(No.21DZ1208900)the Academician Workstation of Kunming University of Science and Technology(2024),the Ningbo Yongjiang Talent-Introduction Programme(No.2022A-023-C)the Zhejiang Phenomenological Materials Technology Co.,Ltd.,China.
文摘A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,it exhibits a good combination of yield strength(roughly 1300 MPa)and ductility(approach-ing 20%).Firstly,a multi-phase heterogeneous structure is tailored ranging from nano to micron.Cu is efficiently precipitated as nanoscale clusters(4.2 nm),high-density cuboidal L1_(2) particles(20-40 nm)and L2_(1) particles(500-800 nm)are found to be embedded in the matrix and a bimodal heterogeneous grain structure(1-40μm)is constructed.Secondly,the introduction of Cu effectively suppresses the pre-cipitation of coarse L21 phase at grain boundaries,reducing its volume fraction by 80%and replaced by smaller-scale continuous precipitations within the grains.Thirdly,the high mixing enthalpy gap of Cu and the matrix leads to the formation of local chemical fluctuation and the consequential rugged topog-raphy in the matrix,which result in retarded dislocation motion and promotes dislocation plugging and interlocking during strain,enhancing yield stress and work hardening rate.This study provides a valuable perspective to enhance strength and ductility via enlarged local chemical fluctuation-tailored multi-phase heterogeneous structures.
基金funded by the Youth Fund of the National Natural Science Foundation of China(Grant No.42261070).
文摘Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods. Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy. Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2, Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%, 29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies the importance of inter-class dependencies through ablation experiments.
文摘The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.
基金supported by the project“GEF9874:Strengthening Coordinated Approaches to Reduce Invasive Alien Species(lAS)Threats to Globally Significant Agrobiodiversity and Agroecosystems in China”funding from the Excellent Talent Training Funding Project in Dongcheng District,Beijing,with project number 2024-dchrcpyzz-9.
文摘Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.
基金Natural Science Foundation of Gansu Province(23JRRA866)Higher Education Innovation Fund of Gansu Provincial Department of Education(2025A-132)+1 种基金University-level Scientific Research and Innovation Project of Gansu University of Political Science and Law(GZF2024XQN16)Youth Foundation of Lanzhou Jiaotong University(2023023)。
文摘We show that the torsion module Tor_(j)^(R)(R/a,H_(a)^(i)(X))is in a Serre subcategory for the bounded below R-complex X.In addition,we prove the isomorphism Tor_(s-t)^(R)(R/a,X)≅Tor_(s)^(R)(R/a,H_(a)^(t)(X))in some case.As an application,the Betti number of a complex X in a prime ideal p can be computed by the Betti number of the local cohomology modules of X in p.
基金supported by the National Natural Science Foundation of China(52164028,52274297)the Start-up Research Foundation of Hainan University(KYQD(ZR)20008,KYQD(ZR)21125,KYQD(ZR)23169))+1 种基金Collaborative Innovation Center of Marine Science and Technology of Hainan University(XTCX2022HYC14)Innovative Research Project for Postgraduate Students in Hainan Province(Qhyb2024-95).
文摘Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field coupled with chloride ions(Cl-)fixation strategy in dual single-atom catalysts(DSACs)was proposed,and the resultant catalyst delivered considerable ORR performance in a seawater electrolyte,with a high half-wave potential(E_(1/2))of 0.868 V and a good maximum power density(Pmax)of 182 mW·cm^(−2)in the assembled SZABs,much higher than those of the Pt/C catalyst(E_(1/2):0.846 V;Pmax:150 mW·cm^(−2)).The in-situ characterization and theoretical calculations revealed that the Fe sites have a higher Cl^(−)adsorption affinity than the Co sites,and preferentially adsorbs Cl^(−)in a seawater electrolyte during the ORR process,and thus constructs a low-concentration Cl^(−)local microenvironment through the common-ion exclusion effect,which prevents Cl^(−)adsorption and corrosion in the Co active centers,achieving impressive catalytic stability.In addition,the directional charge movement between Fe and Co atomic pairs establishes a local electric field,optimizing the adsorption energy of Co sites for oxygen-containing intermediates,and further improving the ORR activity.
文摘Objective:To analyze the efficacy of whole-course local simultaneous integrated boost intensity-modulated radiotherapy(SIB-IMRT)on patients with locally advanced esophageal squamous cell carcinoma(ESCC).Methods:88 patients with ESCC admitted to the hospital between October 2022 and October 2024 were selected and randomly divided into two groups using a random number table.The experimental group received SIB-IMRT treatment,while the control group received conventional intensity-modulated radiotherapy(C-IMRT).The objective remission rate,immune function,tumor markers,and adverse reaction rate were compared between the two groups.Results:The objective remission rate in the experimental group was higher than that in the control group(P<0.05).Before treatment,there was no difference in immune function levels and tumor marker levels between the two groups(P>0.05).After treatment,the immune function levels in the experimental group were better than those in the control group,and the tumor marker levels were lower than those in the control group(P<0.05).The adverse reaction rate in the experimental group was lower than that in the control group(P<0.05).Conclusion:SIB-IMRT can improve the objective remission rate of patients with ESCC,protect their immune function,down-regulate tumor marker levels,and prevent side effects after treatment.
基金supported by the National Science and Technology Major Project of China (No. 2017-II-003–0015)。
文摘Deconvolution methods are commonly used to improve the performance of phased array beamforming for sound source localization. However, for coherent sources localization, existing deconvolution methods are either highly computationally demanding or sensitive to parameters.A deconvolution method, based on modifications of Clean based on Source Coherence(CLEAN-SC), is proposed for coherent sources localization. This method is called Coherence CLEAN-SC(C–CLEAN-SC). C–CLEAN-SC is able to locate coherent and incoherent sources in simulation and experimental cases. It has a high computational efficiency and does not require pre-set parameters.
基金the National Natural Science Foundation of China(Grant Nos.62303348 and 62173242)the Aeronautical Science Foundation of China(Grant No.2024M071048002)the National Science Fund for Distinguished Young Scholars(Grant No.62225308)to provide fund for conducting experiments.
文摘Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance.
文摘Malaria is a potentially lethal disease caused by parasites of the Plasmodium genus, transmitted to humans through the bite of infected female mosquitoes, primarily Anopheles. To control this disease, various strategies are implemented, including biological control, which targets the vectors of the parasite. This approach uses biological agents such as entomopathogenic fungi, including Metarhizium pingshaense, a fungus capable of causing lethal infections in mosquitoes. The production of Metarhizium pingshaense is still limited in Burkina Faso, and local cultivation of this fungus could help fill this gap. A study was conducted to identify optimal local substrates that promote its growth. Indeed, after gathering information on the dietary habits of populations in Bobo-Dioulasso and Bama, three potential substrates were selected: rice, cornmeal dough (MFL), and beans. These substrates were inoculated with two strains of Metarhizium pingshaense (S10 and S26) to assess their ability to support fungal growth and their effectiveness. Experimental results showed that MFL and bean substrates favored optimal growth of Metarhizium pingshaense, with growths of 1.91 cm and 2.13 cm after 8 days, compared to 1.83 cm on a standard media (PDA). In terms of virulence, S26 strain caused 60% mosquito mortality on both the bean and PDA media, while S10 strain induced mortalities of 50% for bean and 62% for PDA.
基金Supported by The Bio and Medical Technology Development Program of the National Research Foundation,No.NRF-2022R1C1C1010643.
文摘BACKGROUND Small-bowel capsule endoscopy(SBCE)is widely used to evaluate obscure gastrointestinal bleeding;however,its interpretation is time-consuming and reader-dependent.Although artificial intelligence(AI)has emerged to address these limitations,few models simultaneously perform small-bowel(SB)loca lization and abnormality detection.AIMTo develop an AI model that automatically distinguishes the SB from the stomach and colon and diagnoses SBabnormalities.METHODSWe developed an AI model using 87005 CE images (11925, 33781, and 41299 from the stomach, SB, and colon,respectively) for SB localization and 28405 SBCE images (1337 erosions/ulcers, 126 angiodysplasia, 494 bleeding,and 26448 normal) for abnormality detection. The diagnostic performances of AI-assisted reading and conventionalreading were compared using 32 SBCE videos in patients with suspicious SB bleeding.RESULTSRegarding organ localization, the AI model achieved an area under the receiver operating characteristic curve(AUC) and accuracy exceeding 0.99 and 97%, respectively. For SB abnormality detection, the performance was asfollows: Erosion/ulcer: 99.4% accuracy (AUC, 0.98);angiodysplasia: 99.8% accuracy (AUC, 0.99);bleeding: 99.9%accuracy (AUC, 0.99);normal: 99.3% accuracy (AUC, 0.98). In external validation, AI-assisted reading (8.7 minutes)was significantly faster than conventional reading (53.9 minutes;P < 0.001). The SB localization accuracies (88.6% vs72.7%, P = 0.07) and SB abnormality detection rates (77.3% vs 77.3%, P = 1.00) of the conventional reading and AIassistedreading were comparable.CONCLUSIONOur AI model decreased SBCE reading time and achieved performance comparable to that of experiencedendoscopists, suggesting that AI integration into SBCE reading enables efficient and reliable SB abnormalitydetection.
基金supported by the National Natural Science Foundation of China(Grant Nos.12302006,12132002,and 62188101).
文摘A lightweight composite resonator,consisting of a soft material acoustic black hole(SABH)and multiple vibration absorbers,is embedded in a plate to achieve localization and absorption of low-frequency vibration energy.The combination of local and global admissible functions for displacement enhances the accuracy of the Ritz method in predicting vibration localization characteristics within the SABH domain.Utilizing soft materials for the SABH can reduce the mass and frequency of the composite resonator.Due to the lack of orthogonality between global vibration modes and localized modes,the low-frequency localized modes induced by the SABH are used to shape the initial global modes,thereby concentrating the global vibration of the plate in the SABH region.Consequently,the absorbers of the composite resonator only need to be a small fraction of the mass of the local SABH to achieve substantial vibration control of the host plate.This vibration localization strategy can significantly reduce the vibration amplitude of the host plate and enhance the effectiveness of lightweight absorbers in vibration reduction.
基金Natural Science Foundation of Hubei Province of China,No.2024AFB655Key Research and Development Program of Hubei Province of China,No.2021BCA116National Natural Science Foundation of China,No.82072736,No.82003205,No.
文摘BACKGROUND Coagulation status is closely related to the progression of malignant tumors.In the era of neoadjuvant immunochemotherapy(NICT),the prognostic utility of coagulation indicators in patients with locally advanced gastric cancer(LAGC)undergoing new treatments remains to be determined.AIM To determine whether hypercoagulation is an effective prognostic indicator in patients with LAGC who underwent radical resection after NICT.METHODS A retrospective analysis of clinical data from 104 patients with LAGC,who underwent radical resection after NICT between 2020 and 2023,was performed.Ddimer and fibrinogen concentrations were measured one week before NICT,and again one week before surgery,to analyze the association between these two indicators and their combined indices[non-hypercoagulation(D-dimer and fibrinogen concentrations within the upper limit of normal)vs hypercoagulation(D-dimer or fibrinogen concentrations above the upper limit of normal)]with prognosis.After radical resection,patients were followed-up periodically.The median follow-up duration was 21 months.RESULTS Data collected after NICT revealed that the three-year overall survival(OS)and disease-free survival(DFS)rates the non-hypercoagulation group were significantly better than those in the hypercoagulation group[94.4%vs 78.0%(P=0.019)and 87.0%vs 68.0%(P=0.027),respectively].Multivariate analysis indicated that hypercoagulation after NICT was an independent factor for poor postoperative OS[hazard ratio(HR)4.436,P=0.023]and DFS(HR 2.551,P=0.039).Pre-NICT data demonstrated no statistically significant difference in three-year OS between the non-hypercoagulation and hypercoagulation groups(88.3%vs 84.1%,respectively;P=0.443).CONCLUSION Hypercoagulation after NICT is an effective prognostic indicator in patients with LAGC undergoing radical gastrectomy.
基金National Natural Science Foundation of China(61703363)Shanxi Provincial Basic Research Program(202403021221206)+2 种基金Key Project of Shanxi Provincial Strategic Research on Science and Technology(202304031401011)Funding Project for Scientific Research Innovation Team on Data Mining and Industrial Intelligence Applications(YCXYTD-202402)Yuncheng University Research Project(YQ-2020021)。
文摘In existing image manipulation localization methods,the receptive field of standard convolution is limited,and during feature transfer,it is easy to lose high-frequency information about traces of manipulation.In addition,during feature fusion,the use of fixed sampling kernels makes it difficult to focus on local changes in features,leading to limited localization accuracy.This paper proposes an image manipulation localization method based on dual-branch hybrid convolution.First,a dual-branch hybrid convolution module is designed to expand the receptive field of the model to enhance the feature extraction ability of contextual semantic information,while also enabling the model to focus more on the high-frequency detail features of manipulation traces while localizing the manipulated area.Second,a multiscale content-aware feature fusion module is used to dynamically generate adaptive sampling kernels for each position in the feature map,enabling the model to focus more on the details of local features while locating the manipulated area.Experimental results on multiple datasets show that this method not only effectively improves the accuracy of image manipulation localization but also enhances the robustness of the model.
基金the Professional Technical Service Platform of Shanghai Science and Technology Commission(No.19DZ2291103)。
文摘A novel characterization method for full-matrix constants of PzT-8 piezoceramics based on local electrodes excitation using one sample is proposed to avoid resonant peaks missing and overlapping in the inversion process of resonant ultrasound spectroscopy technology.Elastic matrix,which is sensitive to the resonance spectrum,is obtained by resonant ultrasound spectroscopy.Piezoelectric and dielectric matrices,which are sensitive to the capacitance of driving electrodes,are determined by capacitance inversion.The initial values of elastic constants are deviated by 30%to validate the reliability of this method.The relative errors between measured and inversed values of resonant frequencies are less than 1%and the relative errors of the capacitance are mostly less than 5%.The work has extensive applications in piezoelectric materials characterization.
文摘Autosamplers are indispensable key equipment in modern laboratories,playing a pivotal role in fields such as biomedicine,environmental monitoring,food safety,and materials science.However,domestic autosampler enterprises are facing formidable challenges,confronted by the technological barriers and brand dominance of international giants,as well as increasingly fierce homogeneous competition in the domestic market.This article aims to thoroughly analyze the current market landscape and,based on seven key dimensions—strategic positioning,product technology,sales channels,brand building,service and support,supply chain optimization,and talent development—propose a series of effective market-winning strategies.This will provide theoretical guidance and practical reference for domestic autosampler enterprises to achieve breakthroughs and sustainable development amidst fierce market competition.
基金sponsored by the National Key R&D Program of China(No.2022YFC2806200)the National Natural Science Foundation of China(No.52001055)the Open Foundation of State Key Laboratory of Structural Analysis for Industrial Equipment(GZ22118).
文摘Corrosion poses a major threat to the safety of transportation pipelines.Therefore,it is crucial to have an in-depth understanding of corrosion mechanisms in pipeline steels for the effective management of pipeline integrity.Conducting research on corrosion mechanisms relies on the use of efficient and reliable corrosion monitoring and analysis techniques.The advancements in corrosion monitoring techniques specifically designed for the localized corrosion monitoring were aimed to be introduced,and a comprehensive overview of recent progress in understanding the localized corrosion mechanisms in pipeline steels was provided.Based on the different corrosive environments encountered,the localized corrosion issues inside pipelines are classified into two categories:localized corrosion primarily influenced by electrochemical processes and localized corrosion controlled by both electrochemical and mechanical factors.Additionally,a thorough analysis of the synergistic effects between micro-cell and macro-cell currents,as well as the interplay of mechanics and electrochemistry is presented.Finally,recommendations for future research on the mechanisms of internal localized corrosion in pipelines are provided.
基金support from the National Natural Science Foundation of China(No.52171080)。
文摘The recognition and monitoring of localized corrosion at the early stage on the inner wall surface of pipes are extremely difficult and simultaneously the reliable approach for recognition and monitoring is missing.Here we report a spatially resolved method to recognize and monitor the localized corrosion in a non-destructive way based on the permeating hydrogen signal generated from localized corrosion itself.A simulative localized corrosion was created on one side surface of the carbon steel specimen where a dot of wet elemental sulfur was introduced to accelerate the corrosion on the local region.While,the potential on the other side surface(the reverse side of the corrosion site)of the specimen was measured using a scanning Kelvin probe.The results show that the permeating hydrogen generated from localized corrosion easily arrives on the reverse side surface of the corrosion site and then causes a huge change in surface potential.The location resolution of potential distribution can be revealed with micron level.Therefore,it is thought that the location of localized corrosion can be recognized by the permeating hydrogen signal distribution on the reverse side surface of the corrosion site since the region of potential decreasing is highly corresponding to the corrosion site.Moreover,the strength of the permeating hydrogen signal is highly related to the corrosion depth and transient corrosion rate of localized corrosion.This means that the localized corrosion development can also be monitored using the permeating hydrogen signal.Therefore,it can be expected that the localized corrosion occurring on the inner wall surface of pipes or equipment can be recognized and monitored successfully on the outer wall surface in a non-destructive way once the permeating hydrogen is present during the localized corrosion proceeding.