The time-of-use(TOU)strategy can effectively improve the energy consumption mode of customers,reduce the peak-valley difference of load curve,and optimize the allocation of energy resources.This study presents an Opti...The time-of-use(TOU)strategy can effectively improve the energy consumption mode of customers,reduce the peak-valley difference of load curve,and optimize the allocation of energy resources.This study presents an Optimal guidance mechanism of the flexible load based on strategies of direct load control and time-of-use.First,this study proposes a period partitioning model,which is based on a moving boundary technique with constraint factors,and the Dunn Validity Index(DVI)is used as the objective to solve the period partitioning.Second,a control strategy for the curtailable flexible load is investigated,and a TOU strategy is utilized for further modifying load curve.Third,a price demand response strategy for adjusting transferable load is proposed in this paper.Finally,through the case study analysis of typical daily flexible load curve,the efficiency and correctness of the proposed method and model are validated and proved.展开更多
Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control ...Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control program and developing hydrodynamic and water quality models that can simulate the complex circulation and water quality kinetics within the system,including longitudinal and lateral variations in nutrient and COD concentrations,is a matter of urgency.In this study,a three-dimensional,hydrodynamic,water quality model was developed in GREC,Northern Jiangsu Province.The complex three-dimensional hydrodynamics of GREC were modeled using the unstructured-grid,finite-volume,free-surface,primitive equation coastal ocean circulation model(FVCOM).The water quality model was adapted from the mesocosm nutrients dynamic model in the south Yellow Sea and considers eight compartments:dissolved inorganic nitrogen,soluble reactive phosphorus(SRP),phytoplankton,zooplankton,detritus,dissolved organic nitrogen(DON),dissolved organic phosphorus(DOP),and chemical oxygen demand.The hydrodynamic and water quality models were calibrated and confirmed for 2012 and 2013.A comparison of the model simulations with extensive dataset shows that the models accurately simulate the longitudinal distribution of the hydrodynamics and water quality.The model can be used for total load control management to improve water quality in this area.展开更多
With the help of smart grid technologies,a lot of electrical loads can provide demand response to support the active power balance of the grid.Compared with centralized control methods,decentralized methods reduce the...With the help of smart grid technologies,a lot of electrical loads can provide demand response to support the active power balance of the grid.Compared with centralized control methods,decentralized methods reduce the computational burden of the control center and enhance the reliability of the communication.In this paper,a novel second-order multi-agent consensus control method is proposed for load control problem.By introducing the velocity state into the model,the proposed method achieves better performance than traditional ones.Simulation results verify the effectiveness of the proposed method.展开更多
The aerodynamic loads of wind turbine blades are substantially affected by dynamic stall induced by the variations of the angle of attack of local airfoil sections.The purpose of the present study is to explore the ef...The aerodynamic loads of wind turbine blades are substantially affected by dynamic stall induced by the variations of the angle of attack of local airfoil sections.The purpose of the present study is to explore the effect of leading-edge protuberances on the fluctuation of the aerodynamic performances for wind turbine airfoil during dynamic stall.An experimental investigation is carried out by a direct force measurement technique employing force balance at a Reynolds number Re=2×105.The phase-averaged and instantaneous aerodynamic loads of the pitching airfoil,including the baseline and the wavy airfoil,are presented and analyzed.The phase-averaged results indicate that the effects of dynamic stall for the wavy airfoil can be delayed or minimized compared to the baseline airfoil,and the negative damping area of the wavy airfoil is significant decreased in full-stall condition.These effects of leading-edge protuberances are more notable at a higher reduced frequency.For the instantaneous aerodynamic loads of the wavy airfoil,there is an observable reduction in fluctuations compared with baseline case.Furthermore,spectral analysis is applied to quantitatively undercover the nonstationary features of the instantaneous aerodynamic loads.It is found that the leading edge protuberances can reduce the harmonics of the aerodynamic force signal,and enhance the stability of the aerodynamic loads under different reduced frequencies.In conclusion,leading-edge protuberances are found effective to reduce the fluctuation characteristics of the aerodynamic loads during the dynamic stall process,and help to improve the stability and prolong the service life of the wind turbine blades.展开更多
Impact of rural electrification is picking up,which has changed the energy structure and significantly reduced greenhouse gas emissions in rural areas.At present,due to separation management of agricultural and energy...Impact of rural electrification is picking up,which has changed the energy structure and significantly reduced greenhouse gas emissions in rural areas.At present,due to separation management of agricultural and energy systems,agricultural cost is high,and new energy consumption in the local microgrid is small,but carbon emission is high.We propose a novel optimal operation strategy for a rural microgrid considering greenhouse load control,which is greenhouse environment control.We establish a greenhouse load control model,including an artificial lighting model,a heating load model,and a load shifting model.Our characteristic work is to establish a carbon dioxide model of greenhouse consumption,and we build a unique optimal operation model of a rural microgrid by combining control of carbon dioxide and control of the energy system.We simulate a rural microgrid with wind power,photovoltaic,gas-fired boiler,and cogeneration system.Summer and winter scenarios are used for analysis,as energy consumption patterns in greenhouses during these seasons are highly representative.Results show the proposed optimization strategy can effectively cut operating expenses for the rural microgrid,improve rate of new energy consumption in the local microgrid,and reduce carbon dioxide emissions.展开更多
Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a ...Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a two-area power system.Methods Two areas were connected through an AC tie line in parallel with a DC link to stabilize the frequency of oscillations in both areas.The PI parameters were tuned using the cuckoo search algorithm(CSA)to minimize the integral absolute error(IAE).A state matrix was provided,and the stability of the system was verified by calculating the eigenvalues.The frequency response was investigated for load variation,changes in the generator rate constraint,the turbine time constant,and the governor time constant.Results The CSA was compared with particle swarm optimization algorithm(PSO)under identical conditions.The system was modeled based on a state-space mathematical representation and simulated using MATLAB.The results demonstrated the effectiveness of the proposed controller based on both algorithms and,it is clear that CSA is superior to PSO.Conclusion The CSA algorithm smoothens the system response,reduces ripples,decreases overshooting and settling time,and improves the overall system performance under different disturbances.展开更多
As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inve...As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inverter-based thermostatically controlled load(ITCL)clusters to provide virtual inertia support to the power grid.However,ITCL clusters exhibit significant discrete response characteristics,which precludes the direct integration of load-side inertia support into the synchronous unit side.To address this issue,this paper elaborates on the existing technical framework and analyzes the underlying causes of the problem.It proposes a timestamp allocation mechanism for ITCL cluster control instructions,ensuring that many ITCL terminals can be triggered at staggered times,thereby allowing the load cluster power to adhere to the inertia analog control law at any moment.Building on this foundation,the paper further examines the impact of the inertia response delay of ITCL clusters,which is based on centralized frequency regulation,on the stability of the power system.A design scheme for inertia analog control parameters is proposed,taking into account dual constraints,frequency stability and load cluster regulation capacity.Finally,the feasibility and applicability of the proposed mechanism and parameter design scheme are investigated through simulations conducted via MATLAB/Simulink.展开更多
The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order ...The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes.展开更多
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ...The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.展开更多
With the increasing penetration of renewable energy resources in power systems,conventional timescale separated load frequency control(LFC)and economic dispatch may degrade frequency performance and reduce economic ef...With the increasing penetration of renewable energy resources in power systems,conventional timescale separated load frequency control(LFC)and economic dispatch may degrade frequency performance and reduce economic efficiency.This paper proposes a novel data-driven adaptive distributed optimal disturbance rejection control(DODRC)method for real-time economic LFC problem in nonlinear power systems.Firstly,a basic DODRC method is proposed by integrating the active disturbance rejection control method and the partial primal–dual algorithm.Then,to deal with the tie-line power flow constraints,the logarithmic barrier function is employed to reconstruct the Lagrange function to obtain the constrained DODRC method.By analyzing the sensitivity of the uncertain parameters of power systems,a data-driven adaptive DODRC method is finally proposed with a neural network.The effectiveness of the proposed method is demonstrated by experimental results using real-time equipment.展开更多
Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonli...Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonlinearities and meet robustness requirements across diverse operational scenarios.This paper introduces an enhanced strategy using a multi-objective optimisation framework and a modified non-dominated sorting genetic algorithm Ⅱ(SNSGA).The proposed model optimises the PID controller by minimising key performance metrics:integration time squared error(ITSE),integration time absolute error(ITAE),and rate of change of deviation(J).This approach balances convergence rate,overshoot,and oscillation dynamics effectively.A fuzzy-based method is employed to select the most suitable solution from the Pareto set.The comparative analysis demonstrates that the SNSGA-based approach offers superior tuning capabilities over traditional NSGA-Ⅱ and other advanced control methods.In a two-area thermal power system without reheat,the SNSGA significantly reduces settling times for frequency deviations:2.94s for Δf_(1) and 4.98s for Δf_(2),marking improvements of 31.6%and 13.4%over NSGA-Ⅱ,respectively.展开更多
The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the ...The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.展开更多
This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation techno...This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework.展开更多
The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the ...The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. In this work, a robust nonlinear controller based on the uncertainty and disturbance estimator (UDE) scheme is successfully developed to tightly regulate the output voltage of the boost converter. A systematic procedure is developed to select the controller gains to achieve a satisfactory output response. Using simulation, the effectiveness of the proposed controller is validated and compared to a recent robust nonlinear controller.展开更多
Demand side management techniques have drawn significant attentions along with the development of smart grid.This paper proposes a new direct load control(DLC)model for scheduling interruptible air conditioner loads.T...Demand side management techniques have drawn significant attentions along with the development of smart grid.This paper proposes a new direct load control(DLC)model for scheduling interruptible air conditioner loads.The model is coordinated with the unit commitment and economic dispatch to minimize the total operation cost over the whole dispatch horizon.The network constraints are also considered in the model.To ensure the thermal comfort of the occupants,we are among the first to incorporate the advanced two-parameter thermal inertia dynamical model of customer houses into the DLC model to calculate the indoor temperature variation.This paper also proposes a distributed imperialist competitive algorithm to effectively solve the model.The simulation studies prove the efficiency of the proposed methodology.展开更多
The sudden generation-consumption imbalance is becoming more frequent in modern power systems, causing voltage and frequency stability issues. One potential solution is load participation in primary control. We formul...The sudden generation-consumption imbalance is becoming more frequent in modern power systems, causing voltage and frequency stability issues. One potential solution is load participation in primary control. We formulate a novel optimal load control(NOLC) problem that aims to minimize the disutility of controllable loads in providing primary regulation. In this paper, we show that the network dynamics, coupled with welldefined load control(obtained via optimality condition), can be seen as an optimization algorithm to solve the dual problem of NOLC. Unlike most existing load control frameworks that only consider frequency response, our load-side primary control focuses on frequency, voltage, and aggregate cost. Simulation results imply that the NOLC approach can ensure better frequency and voltage regulations. Moreover, the coordination between NOLC and other devices enabled in the system, the NOLC performance against the total size of controllable loads, and the NOLC effectiveness in a multi-machine power system are also verified in MATLAB/Simulink.展开更多
With the frequent occurrence of global warming and extreme severe weather,the transition of energy to cleaner,and with lower carbon has gradually become a consensus.Microgrids can integrate multiple energy sources and...With the frequent occurrence of global warming and extreme severe weather,the transition of energy to cleaner,and with lower carbon has gradually become a consensus.Microgrids can integrate multiple energy sources and consume renewable energy locally.The amount of pollutants emitted during the operation of the microgrids become an important issue to be considered.This study proposes an optimal day-ahead scheduling strategy of microgrid considering regional pollution and potential load curtailment.First,considering the operating characteristics of microgrids in islanded and grid-connected operation modes,this study proposes a regional pollution index(RPI)to quantify the impact of pollutants emitted from microgrid on the environment,and further proposes a penalty mechanism based on the RPI to reduce the microgrid’s utilization on non-clean power supplies.Second,considering the benefits of microgrid as the operating entity,utilizing a direct load control(DLC)enables microgrid to enhance power transfer capabilities to the grid under the penalty mechanism based on RPI.Finally,an optimal day-ahead scheduling strategy which considers both the load curtailment potential of curtailable loads and RPI is proposed,and the results show that the proposed optimal day-ahead scheduling strategy can effectively inspire the curtailment potential of curtailable loads in the microgrid,reducing pollutant emissions from the microgrid.展开更多
Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness t...Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness test of aircraft actuation systems. The tracking performance of the static loading is studied in this paper. Firstly, the nonlinear mathematical models of the hydraulic load simulator are derived, and the feedback linearization method is employed to construct a feed-forward controller to improve the force tracking performance. Considering the effect of the friction, a LuGre model based friction compensation is synthesized, in which the unmeasurable state is estimated by a dual state observer via a controlled learning mechanism to guarantee that the estimation is bounded. The modeling errors are attenuated by a well-designed robust controller with a control accuracy measured by a design parameter. Employing the dual state observer is to capture the different effects of the unmeasured state and hence can improve the friction compensation accuracy. The tracking performance is summarized by a derived theorem. Experimental results are also obtained to verify the high performance nature of the proposed control strategy.展开更多
The deregulation of the electricity market made the open communication infrastructure an exigent need for future power system. In this scenario dedicated communication links are replaced by shared networks. These shar...The deregulation of the electricity market made the open communication infrastructure an exigent need for future power system. In this scenario dedicated communication links are replaced by shared networks. These shared networks are characterized by random time delay and data loss. The random time delay and data loss may lead to system instability if they are not considered during the controller design stage. Load frequency control systems used to rely on dedicated communication links. To meet future power system challenges these dedicated networks are replaced by open communication links which makes the system stochastic. In this paper, the stochastic stabilization of load frequency control system under networked environment is investigated. The shared network is represented by three states which are governed by Markov chains. A controller synthesis method based on the stochastic stability criteria is presented in the paper. A one-area load frequency control system is chosen as case study. The effectiveness of the proposed method for the controller synthesis is tested through simulation. The derived proportion integration (PI) controller proves to be optimum where it is a compromise between compensating the random time delay effects and degrading the system dynamic performance. The range of the PI controller gains that guarantee the stochastic stability is determined. Also the range of the PI controller gains that achieve the robust stochastic stability is determined where the decay rate is used to measure the robustness of the system.展开更多
基金supported by open fund of state key laboratory of operation and control of renewable energy&storage systems(China electric power research institute)(No.NYB51202201709).
文摘The time-of-use(TOU)strategy can effectively improve the energy consumption mode of customers,reduce the peak-valley difference of load curve,and optimize the allocation of energy resources.This study presents an Optimal guidance mechanism of the flexible load based on strategies of direct load control and time-of-use.First,this study proposes a period partitioning model,which is based on a moving boundary technique with constraint factors,and the Dunn Validity Index(DVI)is used as the objective to solve the period partitioning.Second,a control strategy for the curtailable flexible load is investigated,and a TOU strategy is utilized for further modifying load curve.Third,a price demand response strategy for adjusting transferable load is proposed in this paper.Finally,through the case study analysis of typical daily flexible load curve,the efficiency and correctness of the proposed method and model are validated and proved.
基金supported by Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers (Grant No.U1406403)the Sea Area Use Fund of Jiangsu Province (Environmental Capacity for the Key Coast of Jiangsu Province)+1 种基金the National Natural Science Foundation of China (No.41340046)Modeling work was completed at the Computing Services Center,Ocean University of China
文摘Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control program and developing hydrodynamic and water quality models that can simulate the complex circulation and water quality kinetics within the system,including longitudinal and lateral variations in nutrient and COD concentrations,is a matter of urgency.In this study,a three-dimensional,hydrodynamic,water quality model was developed in GREC,Northern Jiangsu Province.The complex three-dimensional hydrodynamics of GREC were modeled using the unstructured-grid,finite-volume,free-surface,primitive equation coastal ocean circulation model(FVCOM).The water quality model was adapted from the mesocosm nutrients dynamic model in the south Yellow Sea and considers eight compartments:dissolved inorganic nitrogen,soluble reactive phosphorus(SRP),phytoplankton,zooplankton,detritus,dissolved organic nitrogen(DON),dissolved organic phosphorus(DOP),and chemical oxygen demand.The hydrodynamic and water quality models were calibrated and confirmed for 2012 and 2013.A comparison of the model simulations with extensive dataset shows that the models accurately simulate the longitudinal distribution of the hydrodynamics and water quality.The model can be used for total load control management to improve water quality in this area.
基金supported by Science and Technology Project of China Southern Power Grid Corporation(090000KK52190230).
文摘With the help of smart grid technologies,a lot of electrical loads can provide demand response to support the active power balance of the grid.Compared with centralized control methods,decentralized methods reduce the computational burden of the control center and enhance the reliability of the communication.In this paper,a novel second-order multi-agent consensus control method is proposed for load control problem.By introducing the velocity state into the model,the proposed method achieves better performance than traditional ones.Simulation results verify the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(Grant 51736008)"Transformational Technologies for Clean Energy and Demonstration",Strategic Priority Research Program of the Chinese Academy of Sciences(Grant XDA21050303).
文摘The aerodynamic loads of wind turbine blades are substantially affected by dynamic stall induced by the variations of the angle of attack of local airfoil sections.The purpose of the present study is to explore the effect of leading-edge protuberances on the fluctuation of the aerodynamic performances for wind turbine airfoil during dynamic stall.An experimental investigation is carried out by a direct force measurement technique employing force balance at a Reynolds number Re=2×105.The phase-averaged and instantaneous aerodynamic loads of the pitching airfoil,including the baseline and the wavy airfoil,are presented and analyzed.The phase-averaged results indicate that the effects of dynamic stall for the wavy airfoil can be delayed or minimized compared to the baseline airfoil,and the negative damping area of the wavy airfoil is significant decreased in full-stall condition.These effects of leading-edge protuberances are more notable at a higher reduced frequency.For the instantaneous aerodynamic loads of the wavy airfoil,there is an observable reduction in fluctuations compared with baseline case.Furthermore,spectral analysis is applied to quantitatively undercover the nonstationary features of the instantaneous aerodynamic loads.It is found that the leading edge protuberances can reduce the harmonics of the aerodynamic force signal,and enhance the stability of the aerodynamic loads under different reduced frequencies.In conclusion,leading-edge protuberances are found effective to reduce the fluctuation characteristics of the aerodynamic loads during the dynamic stall process,and help to improve the stability and prolong the service life of the wind turbine blades.
基金supported by the National Natural Science Foundation of China under Grant 52007193,and The 2115 Talent Development Program of China Agricultural University。
文摘Impact of rural electrification is picking up,which has changed the energy structure and significantly reduced greenhouse gas emissions in rural areas.At present,due to separation management of agricultural and energy systems,agricultural cost is high,and new energy consumption in the local microgrid is small,but carbon emission is high.We propose a novel optimal operation strategy for a rural microgrid considering greenhouse load control,which is greenhouse environment control.We establish a greenhouse load control model,including an artificial lighting model,a heating load model,and a load shifting model.Our characteristic work is to establish a carbon dioxide model of greenhouse consumption,and we build a unique optimal operation model of a rural microgrid by combining control of carbon dioxide and control of the energy system.We simulate a rural microgrid with wind power,photovoltaic,gas-fired boiler,and cogeneration system.Summer and winter scenarios are used for analysis,as energy consumption patterns in greenhouses during these seasons are highly representative.Results show the proposed optimization strategy can effectively cut operating expenses for the rural microgrid,improve rate of new energy consumption in the local microgrid,and reduce carbon dioxide emissions.
基金Supported by the Russian Science Foundation(Agreement 23-41-10001,https://rscf.ru/project/23-41-10001/).
文摘Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a two-area power system.Methods Two areas were connected through an AC tie line in parallel with a DC link to stabilize the frequency of oscillations in both areas.The PI parameters were tuned using the cuckoo search algorithm(CSA)to minimize the integral absolute error(IAE).A state matrix was provided,and the stability of the system was verified by calculating the eigenvalues.The frequency response was investigated for load variation,changes in the generator rate constraint,the turbine time constant,and the governor time constant.Results The CSA was compared with particle swarm optimization algorithm(PSO)under identical conditions.The system was modeled based on a state-space mathematical representation and simulated using MATLAB.The results demonstrated the effectiveness of the proposed controller based on both algorithms and,it is clear that CSA is superior to PSO.Conclusion The CSA algorithm smoothens the system response,reduces ripples,decreases overshooting and settling time,and improves the overall system performance under different disturbances.
基金supported by the Key Scientific and Technological Projects(2024KJGG27)of Tianfu Yongxing Laboratorythe Experimental Platform Open Innovation Funding(209042025003)of Sichuan Energy Internet Research Institute,Tsinghua University.
文摘As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inverter-based thermostatically controlled load(ITCL)clusters to provide virtual inertia support to the power grid.However,ITCL clusters exhibit significant discrete response characteristics,which precludes the direct integration of load-side inertia support into the synchronous unit side.To address this issue,this paper elaborates on the existing technical framework and analyzes the underlying causes of the problem.It proposes a timestamp allocation mechanism for ITCL cluster control instructions,ensuring that many ITCL terminals can be triggered at staggered times,thereby allowing the load cluster power to adhere to the inertia analog control law at any moment.Building on this foundation,the paper further examines the impact of the inertia response delay of ITCL clusters,which is based on centralized frequency regulation,on the stability of the power system.A design scheme for inertia analog control parameters is proposed,taking into account dual constraints,frequency stability and load cluster regulation capacity.Finally,the feasibility and applicability of the proposed mechanism and parameter design scheme are investigated through simulations conducted via MATLAB/Simulink.
文摘The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030001)the National Key Research and Development Program of China(Grant No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.JCKYS2022212004)。
文摘The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.
基金supported in part by the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant LAPS24009in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2021A1515110016in part by the National Natural Science Foundation of China under Grant 52206009.
文摘With the increasing penetration of renewable energy resources in power systems,conventional timescale separated load frequency control(LFC)and economic dispatch may degrade frequency performance and reduce economic efficiency.This paper proposes a novel data-driven adaptive distributed optimal disturbance rejection control(DODRC)method for real-time economic LFC problem in nonlinear power systems.Firstly,a basic DODRC method is proposed by integrating the active disturbance rejection control method and the partial primal–dual algorithm.Then,to deal with the tie-line power flow constraints,the logarithmic barrier function is employed to reconstruct the Lagrange function to obtain the constrained DODRC method.By analyzing the sensitivity of the uncertain parameters of power systems,a data-driven adaptive DODRC method is finally proposed with a neural network.The effectiveness of the proposed method is demonstrated by experimental results using real-time equipment.
基金supported in part by the Science and Technology Innovation Program of Hunan Province under Grant 2022RC4028in part by the National Natural Science Foundation of China under Grant 62473204+3 种基金in part by the Chunhui Program Collaborative Scientific Research Project under Grant 202202004in part by the Natural Science Foundation of Nanjing University of Posts and Telecommunications under Grants NY221082,NY222144,and NY223075in part by the Huali Program for Excellent Talents in Nanjing University of Posts and Telecommunicationsin part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX24_1215.
文摘Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonlinearities and meet robustness requirements across diverse operational scenarios.This paper introduces an enhanced strategy using a multi-objective optimisation framework and a modified non-dominated sorting genetic algorithm Ⅱ(SNSGA).The proposed model optimises the PID controller by minimising key performance metrics:integration time squared error(ITSE),integration time absolute error(ITAE),and rate of change of deviation(J).This approach balances convergence rate,overshoot,and oscillation dynamics effectively.A fuzzy-based method is employed to select the most suitable solution from the Pareto set.The comparative analysis demonstrates that the SNSGA-based approach offers superior tuning capabilities over traditional NSGA-Ⅱ and other advanced control methods.In a two-area thermal power system without reheat,the SNSGA significantly reduces settling times for frequency deviations:2.94s for Δf_(1) and 4.98s for Δf_(2),marking improvements of 31.6%and 13.4%over NSGA-Ⅱ,respectively.
文摘The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.
文摘This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework.
文摘The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. In this work, a robust nonlinear controller based on the uncertainty and disturbance estimator (UDE) scheme is successfully developed to tightly regulate the output voltage of the boost converter. A systematic procedure is developed to select the controller gains to achieve a satisfactory output response. Using simulation, the effectiveness of the proposed controller is validated and compared to a recent robust nonlinear controller.
基金supported by National Natural Science Foundation of China(61533013,61273144)Scientific Technology Research and Development Plan Project of Tangshan(13130298B)Scientific Technology Research and Development Plan Project of Hebei(z2014070)
基金This work was supported in part by National Natural Science Foundation of China(Key Project 71331001,General Project 71371065,11171095,71071025).
文摘Demand side management techniques have drawn significant attentions along with the development of smart grid.This paper proposes a new direct load control(DLC)model for scheduling interruptible air conditioner loads.The model is coordinated with the unit commitment and economic dispatch to minimize the total operation cost over the whole dispatch horizon.The network constraints are also considered in the model.To ensure the thermal comfort of the occupants,we are among the first to incorporate the advanced two-parameter thermal inertia dynamical model of customer houses into the DLC model to calculate the indoor temperature variation.This paper also proposes a distributed imperialist competitive algorithm to effectively solve the model.The simulation studies prove the efficiency of the proposed methodology.
基金supported in part by the National Natural Science Foundation of China (No.U1909201)。
文摘The sudden generation-consumption imbalance is becoming more frequent in modern power systems, causing voltage and frequency stability issues. One potential solution is load participation in primary control. We formulate a novel optimal load control(NOLC) problem that aims to minimize the disutility of controllable loads in providing primary regulation. In this paper, we show that the network dynamics, coupled with welldefined load control(obtained via optimality condition), can be seen as an optimization algorithm to solve the dual problem of NOLC. Unlike most existing load control frameworks that only consider frequency response, our load-side primary control focuses on frequency, voltage, and aggregate cost. Simulation results imply that the NOLC approach can ensure better frequency and voltage regulations. Moreover, the coordination between NOLC and other devices enabled in the system, the NOLC performance against the total size of controllable loads, and the NOLC effectiveness in a multi-machine power system are also verified in MATLAB/Simulink.
基金Anhui Provincial Natural Science Foundation (No. 2208085UD07)National Natural Science Foundation of China (52377089).
文摘With the frequent occurrence of global warming and extreme severe weather,the transition of energy to cleaner,and with lower carbon has gradually become a consensus.Microgrids can integrate multiple energy sources and consume renewable energy locally.The amount of pollutants emitted during the operation of the microgrids become an important issue to be considered.This study proposes an optimal day-ahead scheduling strategy of microgrid considering regional pollution and potential load curtailment.First,considering the operating characteristics of microgrids in islanded and grid-connected operation modes,this study proposes a regional pollution index(RPI)to quantify the impact of pollutants emitted from microgrid on the environment,and further proposes a penalty mechanism based on the RPI to reduce the microgrid’s utilization on non-clean power supplies.Second,considering the benefits of microgrid as the operating entity,utilizing a direct load control(DLC)enables microgrid to enhance power transfer capabilities to the grid under the penalty mechanism based on RPI.Finally,an optimal day-ahead scheduling strategy which considers both the load curtailment potential of curtailable loads and RPI is proposed,and the results show that the proposed optimal day-ahead scheduling strategy can effectively inspire the curtailment potential of curtailable loads in the microgrid,reducing pollutant emissions from the microgrid.
基金National Science Fund for Distinguished Young Scholars (50825502)
文摘Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness test of aircraft actuation systems. The tracking performance of the static loading is studied in this paper. Firstly, the nonlinear mathematical models of the hydraulic load simulator are derived, and the feedback linearization method is employed to construct a feed-forward controller to improve the force tracking performance. Considering the effect of the friction, a LuGre model based friction compensation is synthesized, in which the unmeasurable state is estimated by a dual state observer via a controlled learning mechanism to guarantee that the estimation is bounded. The modeling errors are attenuated by a well-designed robust controller with a control accuracy measured by a design parameter. Employing the dual state observer is to capture the different effects of the unmeasured state and hence can improve the friction compensation accuracy. The tracking performance is summarized by a derived theorem. Experimental results are also obtained to verify the high performance nature of the proposed control strategy.
文摘The deregulation of the electricity market made the open communication infrastructure an exigent need for future power system. In this scenario dedicated communication links are replaced by shared networks. These shared networks are characterized by random time delay and data loss. The random time delay and data loss may lead to system instability if they are not considered during the controller design stage. Load frequency control systems used to rely on dedicated communication links. To meet future power system challenges these dedicated networks are replaced by open communication links which makes the system stochastic. In this paper, the stochastic stabilization of load frequency control system under networked environment is investigated. The shared network is represented by three states which are governed by Markov chains. A controller synthesis method based on the stochastic stability criteria is presented in the paper. A one-area load frequency control system is chosen as case study. The effectiveness of the proposed method for the controller synthesis is tested through simulation. The derived proportion integration (PI) controller proves to be optimum where it is a compromise between compensating the random time delay effects and degrading the system dynamic performance. The range of the PI controller gains that guarantee the stochastic stability is determined. Also the range of the PI controller gains that achieve the robust stochastic stability is determined where the decay rate is used to measure the robustness of the system.