This paper is a further study of two papers [1] and [2], which were related to Ill-Conditioned Load Flow Problems and were published by IEEE Trans. PAS. The authors of this paper have some different opinions, for exam...This paper is a further study of two papers [1] and [2], which were related to Ill-Conditioned Load Flow Problems and were published by IEEE Trans. PAS. The authors of this paper have some different opinions, for example, the 11-bus system is not an ill-conditioned system. In addition, a new approach to solve Load Flow Problems, E-ψtc, is introduced. It is an explicit method;solving linear equations is not needed. It can handle very tough and very large systems. The advantage of this method has been fully proved by two examples. The authors give this new method a detailed description of how to use it to solve Load Flow Problems and successfully apply it to the 43-bus and the 11-bus systems. The authors also propose a strategy to test the reliability, and by solving gradient equations, this new method can answer if the solution exists or not.展开更多
Load flow is an important tool used by power engineers for planning, to determine the best operation for a power system and exchange of power between utility companies. In order to have an efficient operating power sy...Load flow is an important tool used by power engineers for planning, to determine the best operation for a power system and exchange of power between utility companies. In order to have an efficient operating power system, it is necessary to determine which method is suitable and efficient for the system’s load flow analysis. A power flow analysis method may take a long time and therefore prevent achieving an accurate result to a power flow solution because of continuous changes in power demand and generations. This paper presents analysis of the load flow problem in power system planning studies. The numerical methods: Gauss-Seidel, Newton-Raphson and Fast Decoupled methods were compared for a power flow analysis solution. Simulation is carried out using Matlab for test cases of IEEE 9-Bus, IEEE 30-Bus and IEEE 57-Bus system. The simulation results were compared for number of iteration, computational time, tolerance value and convergence. The compared results show that Newton-Raphson is the most reliable method because it has the least number of iteration and converges faster.展开更多
For a long time, because of the lack of investment capital and enough attentions, the overall constructions of rural power grid were far behind than the urban power grid in Chongqing Jiangbei Power Company. The low vo...For a long time, because of the lack of investment capital and enough attentions, the overall constructions of rural power grid were far behind than the urban power grid in Chongqing Jiangbei Power Company. The low voltage problems were highlighted in the rural power grid due to the characteristics of rural power grid. Using the distribution network flow calculation method, we evaluated the low voltage problems of the rural power grid which belongs to Chongqing Jiangbei Power Company. In addition, we collected the data of distribution transformers in electricity consumption peak period. Some practical management strategies were proposed by the analysis and evaluation of potential and appeared low voltage problems.展开更多
Probabilistic load flow(PLF)algorithm has been regained attention,because the large-scale wind power integration into the grid has increased the uncertainty of the stable and safe operation of the power system.The PLF...Probabilistic load flow(PLF)algorithm has been regained attention,because the large-scale wind power integration into the grid has increased the uncertainty of the stable and safe operation of the power system.The PLF algorithm is improved with introducing the power performance of double-fed induction generators(DFIGs)for wind turbines(WTs)under the constant power factor control and the constant voltage control in this paper.Firstly,the conventional Jacobian matrix of the alternating current(AC)load flow model is modified,and the probability distributions of the active and reactive powers of the DFIGs are derived by combining the power performance of the DFIGs and the Weibull distribution of wind speed.Then,the cumulants of the state variables in power grid are obtained by improved PLF model and more accurate power probability distributions.In order to generate the probability density function(PDF)of the nodal voltage,Gram-Charlier,Edgeworth and Cornish-Fisher expansions based on the cumulants are applied.Finally,the effectiveness and accuracy of the improved PLF algorithm is demonstrated in the IEEE 14-RTS system with wind power integration,compared with the results of Monte Carlo(MC)simulation using deterministic load flow calculation.展开更多
Urban railway systems differ greatly from general power systems in that they use direct current(DC)power supply and that the location and power requirements of the loads change.The position and power consumption of th...Urban railway systems differ greatly from general power systems in that they use direct current(DC)power supply and that the location and power requirements of the loads change.The position and power consumption of the load shall be interpreted continuously every second,or in a fixed unit of time,for a specific period of time during which the operating conditions are repeated.The additional analysis of energy-saving systems being considered as energy efficiency improvement methods requires more complex load flow analysis algorithms.Simulations are performed load flow every time step.The power of an electric railway power feeding system is the power consumed or produced by a train.Because the amount and position of the load change rapidly over time,load flow analysis continues over time.Therefore,based on the method of obtaining solutions by constructing node equations for load flow analysis in this study,load flow analysis was performed through algorithms with energy-saving systems applied.Both thetrain performance simulation(TPS)and power simulation results show that the actual measurement data are estimated almost equally.展开更多
Based on risk theory, considering the probability of an accident and the severity of the sequence, combining N-1 and N-2 security check, this paper puts forward a new risk index, which uses the amount of optimal load ...Based on risk theory, considering the probability of an accident and the severity of the sequence, combining N-1 and N-2 security check, this paper puts forward a new risk index, which uses the amount of optimal load shedding as the severity of an accident consequence to identify the critical lines in power system. Taking IEEE24-RTS as an example, the simulation results verify the correctness and effectiveness of the proposed index.展开更多
In this paper a procedure is established for solving the Probabilistic Load Flow in an electrical power network, considering correlation between power generated by power plants, loads demanded on each bus and power in...In this paper a procedure is established for solving the Probabilistic Load Flow in an electrical power network, considering correlation between power generated by power plants, loads demanded on each bus and power injected by wind farms. The method proposed is based on the generation of correlated series of power values, which can be used in a MonteCarlo simulation, to obtain the probability density function of the power through branches of an electrical network.展开更多
Discusses the significance of induction motor constant resistance (IM R) load on the lower part of the PV curve of a power system and determines the conditions for stable operation of IM R load using fuzzy techniques ...Discusses the significance of induction motor constant resistance (IM R) load on the lower part of the PV curve of a power system and determines the conditions for stable operation of IM R load using fuzzy techniques and load flow.展开更多
Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration...Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm.展开更多
A distribution grid is generally characterized by a high R/X (resistance/reactance) ratio and it is radial in nature. By design, a distribution grid system is not an active network, and it is normally designed in su...A distribution grid is generally characterized by a high R/X (resistance/reactance) ratio and it is radial in nature. By design, a distribution grid system is not an active network, and it is normally designed in such a way that power flows from transmission system via distribution system to consumers. But in a situation when wind turbines are connected to the distribution grid, the power source will change from one source to two sources, in this case, network is said to be active. This may probably have an impact on the distribution grid to whenever the wind turbine is connected. The best way to know the impact of wind turbine on the distribution grid in question is by carrying out load flow analysis on that system with and without the connection of wind turbines. Two major fundamental calculations: the steady-state voltage variation at the PCC (point of common coupling) and the calculation of short-circuit power of the grid system at the POC (point of connection) are necessary before carrying out the load flow study on the distribution grid. This paper, therefore, considers these pre-load flow calculations that are necessary before carrying out load flow study on the test distribution grid. These calculations are carded out on a test distribution system.展开更多
The increased level of penetration of wind generators into modern power system has significant effect on network operation. The time varying nature of wind speed has significant effect on performance of wind generator...The increased level of penetration of wind generators into modern power system has significant effect on network operation. The time varying nature of wind speed has significant effect on performance of wind generator, therefore efficient mechanism for stabilizing the output of the wind generator is very much needed. Self-excited induction generators (SEIG) already existing in the network are sensitive to wind speeds. In this paper, a new method for voltage control of SEIG utilizing reactive power enhancing capabilities of doubly-fed induction generator (DFIG) is simulated and its effect on the network is analyzed for varying wind speeds. The choice of placing DFIG adjacent to SEIG or at another bus is also addressed in this paper with simulation results. The results show that this method of utilizing the reactive power capabilities of DFIG enhances voltage stability of SEIG as well as system stability.展开更多
The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi...The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.展开更多
The problem of the boundary layer flow of power law non-Newtonian fluids with a novel boundary condition is studied. The existence and uniqueness of the solutions are examined, which are found to depend on the curvatu...The problem of the boundary layer flow of power law non-Newtonian fluids with a novel boundary condition is studied. The existence and uniqueness of the solutions are examined, which are found to depend on the curvature of the solutions for different values of the power law index n. It is established with the aid of the Picard-Lindelof theorem that the nonlinear boundary value problem has a unique solution in the global domain for all values of the power law index n but with certain conditions on the curva- ture of the solutions. This is done after a suitable transformation of the dependent and independent variables. For 0 〈 n ≤ 1, the solution has a positive curvature, while for n 〉 1, the solution has a negative or zero curvature on some part of the global domain. Some solutions are presented graphically to illustrate the results and the behaviors of the solutions.展开更多
For Power distribution system the most important task for distribution engineer is to efficiently simulate the system and address the uncertainty using a suitable mathematical method. This paper presents a comparison ...For Power distribution system the most important task for distribution engineer is to efficiently simulate the system and address the uncertainty using a suitable mathematical method. This paper presents a comparison of two methods used in analyzing uncertainties. The first method is Montecarlo simulation (MCS) that considers input parameters as random variables and second one is fuzzy alpha cut method (FAC) in which uncertain parameters are treated as fuzzy numbers with given membership functions. Both techniques are tested on a typical Load flow solution simulation, where connected loads are considered as uncertain. In order to provide a basis for comparison between above two approaches, the shapes of the membership function used in the fuzzy method is taken same as the shape of the probability density function used in the Monte Carlo simulations. For more than one uncertain input variable, simulation result indicates that MCS method provides better output results compared to FAC, however takes more time due to number of runs. FAC provides an alternate method to MCS when addressing single or limited input variables and is fast.展开更多
Two new methods were presented for power flow tracing(PFT).These two methods were compared and the results were discussed in detail.Both methods use the active and reactive power balance equations at each bus in order...Two new methods were presented for power flow tracing(PFT).These two methods were compared and the results were discussed in detail.Both methods use the active and reactive power balance equations at each bus in order to solve the tracing problem.The first method considers the proportional sharing assumption while the second one uses the circuit laws to find the relationship between power inflows and outflows through each line,generator and load connected to each bus of the network.Both methods are able to handle loop flow and loss issues in tracing problem.A formulation is also proposed to find the share of each unit in provision of each load.These methods are applied to find the producer and consumer's shares on the cost of transmission for each line in different case studies.As the results of these studies show,both methods can effectively solve the PFT problem.展开更多
To improve the security and reliability of a distribution network, several issues, such as influences of operation con-strains, real-time load margin calculation, and online security level evaluation, are with great s...To improve the security and reliability of a distribution network, several issues, such as influences of operation con-strains, real-time load margin calculation, and online security level evaluation, are with great significance. In this pa-per, a mathematical model for load capability online assessment of a distribution network is established, and a repeti-tive power flow calculation algorithm is proposed to solve the problem as well. With assessment on three levels: the entire distribution network, a sub-area of the network and a load bus, the security level of current operation mode and load transfer capability during outage are thus obtained. The results can provide guidelines for prevention control, as well as restoration control. Simulation results show that the method is simple, fast and can be applied to distribution networks belonged to any voltage level while taking into account all of the operation constraints.展开更多
Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,ru...Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability.展开更多
Quantum power flow(QPF)offers an inspiring direction for overcoming the computation challenge of power flow through quantum computing.However,the practical implementation of existing QPF algorithms in today’s noisy-i...Quantum power flow(QPF)offers an inspiring direction for overcoming the computation challenge of power flow through quantum computing.However,the practical implementation of existing QPF algorithms in today’s noisy-intermediate-scale quantum(NISQ)era remains limited because of their sensitivity to noise.This paper establishes an NISQ-QPF algorithm that enables power flow computation on noisy quantum devices.The main contributions include:(1)a variational quantum circuit(VQC)-based alternating current(AC)power flow formulation,which enables QPF using short-depth quantum circuits;(2)NISQ-compatible QPF solvers based on the variational quantum linear solver(VQLS)and modified fast decoupled power flow;and(3)an error-resilient QPF scheme to relieve the QPF iteration deviations caused by noise;(3)a practical NISQ-QPF framework for implementable and reliable power flow analysis on noisy quantum machines.Extensive simulation tests validate the accuracy and generality of NISQ-QPF for solving practical power flow on IBM’s real,noisy quantum computers.展开更多
As power system interconnections become more prevalent, there has been an increase in use of thyristor controlled shunt connected compensation devices for dynamic power compensation and enhancement of real power trans...As power system interconnections become more prevalent, there has been an increase in use of thyristor controlled shunt connected compensation devices for dynamic power compensation and enhancement of real power transmission capacity. In this paper, an enhancement technique of real power transfer capacity of transmission lines is presented. A SVC (static var compensator) is designed and applied to a simple power system for this purpose. Increase in power flow and improvement in bus voltage profile are observed after using the SVC. Stability analysis of the system after experiencing fault as well as consequent fault clearance by time domain analysis has also beeu performed and satisfactory results are obtained.展开更多
文摘This paper is a further study of two papers [1] and [2], which were related to Ill-Conditioned Load Flow Problems and were published by IEEE Trans. PAS. The authors of this paper have some different opinions, for example, the 11-bus system is not an ill-conditioned system. In addition, a new approach to solve Load Flow Problems, E-ψtc, is introduced. It is an explicit method;solving linear equations is not needed. It can handle very tough and very large systems. The advantage of this method has been fully proved by two examples. The authors give this new method a detailed description of how to use it to solve Load Flow Problems and successfully apply it to the 43-bus and the 11-bus systems. The authors also propose a strategy to test the reliability, and by solving gradient equations, this new method can answer if the solution exists or not.
文摘Load flow is an important tool used by power engineers for planning, to determine the best operation for a power system and exchange of power between utility companies. In order to have an efficient operating power system, it is necessary to determine which method is suitable and efficient for the system’s load flow analysis. A power flow analysis method may take a long time and therefore prevent achieving an accurate result to a power flow solution because of continuous changes in power demand and generations. This paper presents analysis of the load flow problem in power system planning studies. The numerical methods: Gauss-Seidel, Newton-Raphson and Fast Decoupled methods were compared for a power flow analysis solution. Simulation is carried out using Matlab for test cases of IEEE 9-Bus, IEEE 30-Bus and IEEE 57-Bus system. The simulation results were compared for number of iteration, computational time, tolerance value and convergence. The compared results show that Newton-Raphson is the most reliable method because it has the least number of iteration and converges faster.
文摘For a long time, because of the lack of investment capital and enough attentions, the overall constructions of rural power grid were far behind than the urban power grid in Chongqing Jiangbei Power Company. The low voltage problems were highlighted in the rural power grid due to the characteristics of rural power grid. Using the distribution network flow calculation method, we evaluated the low voltage problems of the rural power grid which belongs to Chongqing Jiangbei Power Company. In addition, we collected the data of distribution transformers in electricity consumption peak period. Some practical management strategies were proposed by the analysis and evaluation of potential and appeared low voltage problems.
文摘Probabilistic load flow(PLF)algorithm has been regained attention,because the large-scale wind power integration into the grid has increased the uncertainty of the stable and safe operation of the power system.The PLF algorithm is improved with introducing the power performance of double-fed induction generators(DFIGs)for wind turbines(WTs)under the constant power factor control and the constant voltage control in this paper.Firstly,the conventional Jacobian matrix of the alternating current(AC)load flow model is modified,and the probability distributions of the active and reactive powers of the DFIGs are derived by combining the power performance of the DFIGs and the Weibull distribution of wind speed.Then,the cumulants of the state variables in power grid are obtained by improved PLF model and more accurate power probability distributions.In order to generate the probability density function(PDF)of the nodal voltage,Gram-Charlier,Edgeworth and Cornish-Fisher expansions based on the cumulants are applied.Finally,the effectiveness and accuracy of the improved PLF algorithm is demonstrated in the IEEE 14-RTS system with wind power integration,compared with the results of Monte Carlo(MC)simulation using deterministic load flow calculation.
基金This study was conducted by the Ministry of Land,Infrastructure and Transport’s Research Project on Railway Technology-Projects(21RTRP-B146034-04).
文摘Urban railway systems differ greatly from general power systems in that they use direct current(DC)power supply and that the location and power requirements of the loads change.The position and power consumption of the load shall be interpreted continuously every second,or in a fixed unit of time,for a specific period of time during which the operating conditions are repeated.The additional analysis of energy-saving systems being considered as energy efficiency improvement methods requires more complex load flow analysis algorithms.Simulations are performed load flow every time step.The power of an electric railway power feeding system is the power consumed or produced by a train.Because the amount and position of the load change rapidly over time,load flow analysis continues over time.Therefore,based on the method of obtaining solutions by constructing node equations for load flow analysis in this study,load flow analysis was performed through algorithms with energy-saving systems applied.Both thetrain performance simulation(TPS)and power simulation results show that the actual measurement data are estimated almost equally.
基金Technology Major Project of China Southern Power Grid Co.,Ltd.(GZ2014-2-0049).
文摘Based on risk theory, considering the probability of an accident and the severity of the sequence, combining N-1 and N-2 security check, this paper puts forward a new risk index, which uses the amount of optimal load shedding as the severity of an accident consequence to identify the critical lines in power system. Taking IEEE24-RTS as an example, the simulation results verify the correctness and effectiveness of the proposed index.
文摘In this paper a procedure is established for solving the Probabilistic Load Flow in an electrical power network, considering correlation between power generated by power plants, loads demanded on each bus and power injected by wind farms. The method proposed is based on the generation of correlated series of power values, which can be used in a MonteCarlo simulation, to obtain the probability density function of the power through branches of an electrical network.
文摘Discusses the significance of induction motor constant resistance (IM R) load on the lower part of the PV curve of a power system and determines the conditions for stable operation of IM R load using fuzzy techniques and load flow.
文摘Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm.
文摘A distribution grid is generally characterized by a high R/X (resistance/reactance) ratio and it is radial in nature. By design, a distribution grid system is not an active network, and it is normally designed in such a way that power flows from transmission system via distribution system to consumers. But in a situation when wind turbines are connected to the distribution grid, the power source will change from one source to two sources, in this case, network is said to be active. This may probably have an impact on the distribution grid to whenever the wind turbine is connected. The best way to know the impact of wind turbine on the distribution grid in question is by carrying out load flow analysis on that system with and without the connection of wind turbines. Two major fundamental calculations: the steady-state voltage variation at the PCC (point of common coupling) and the calculation of short-circuit power of the grid system at the POC (point of connection) are necessary before carrying out the load flow study on the distribution grid. This paper, therefore, considers these pre-load flow calculations that are necessary before carrying out load flow study on the test distribution grid. These calculations are carded out on a test distribution system.
文摘The increased level of penetration of wind generators into modern power system has significant effect on network operation. The time varying nature of wind speed has significant effect on performance of wind generator, therefore efficient mechanism for stabilizing the output of the wind generator is very much needed. Self-excited induction generators (SEIG) already existing in the network are sensitive to wind speeds. In this paper, a new method for voltage control of SEIG utilizing reactive power enhancing capabilities of doubly-fed induction generator (DFIG) is simulated and its effect on the network is analyzed for varying wind speeds. The choice of placing DFIG adjacent to SEIG or at another bus is also addressed in this paper with simulation results. The results show that this method of utilizing the reactive power capabilities of DFIG enhances voltage stability of SEIG as well as system stability.
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.
文摘The problem of the boundary layer flow of power law non-Newtonian fluids with a novel boundary condition is studied. The existence and uniqueness of the solutions are examined, which are found to depend on the curvature of the solutions for different values of the power law index n. It is established with the aid of the Picard-Lindelof theorem that the nonlinear boundary value problem has a unique solution in the global domain for all values of the power law index n but with certain conditions on the curva- ture of the solutions. This is done after a suitable transformation of the dependent and independent variables. For 0 〈 n ≤ 1, the solution has a positive curvature, while for n 〉 1, the solution has a negative or zero curvature on some part of the global domain. Some solutions are presented graphically to illustrate the results and the behaviors of the solutions.
文摘For Power distribution system the most important task for distribution engineer is to efficiently simulate the system and address the uncertainty using a suitable mathematical method. This paper presents a comparison of two methods used in analyzing uncertainties. The first method is Montecarlo simulation (MCS) that considers input parameters as random variables and second one is fuzzy alpha cut method (FAC) in which uncertain parameters are treated as fuzzy numbers with given membership functions. Both techniques are tested on a typical Load flow solution simulation, where connected loads are considered as uncertain. In order to provide a basis for comparison between above two approaches, the shapes of the membership function used in the fuzzy method is taken same as the shape of the probability density function used in the Monte Carlo simulations. For more than one uncertain input variable, simulation result indicates that MCS method provides better output results compared to FAC, however takes more time due to number of runs. FAC provides an alternate method to MCS when addressing single or limited input variables and is fast.
文摘Two new methods were presented for power flow tracing(PFT).These two methods were compared and the results were discussed in detail.Both methods use the active and reactive power balance equations at each bus in order to solve the tracing problem.The first method considers the proportional sharing assumption while the second one uses the circuit laws to find the relationship between power inflows and outflows through each line,generator and load connected to each bus of the network.Both methods are able to handle loop flow and loss issues in tracing problem.A formulation is also proposed to find the share of each unit in provision of each load.These methods are applied to find the producer and consumer's shares on the cost of transmission for each line in different case studies.As the results of these studies show,both methods can effectively solve the PFT problem.
文摘To improve the security and reliability of a distribution network, several issues, such as influences of operation con-strains, real-time load margin calculation, and online security level evaluation, are with great significance. In this pa-per, a mathematical model for load capability online assessment of a distribution network is established, and a repeti-tive power flow calculation algorithm is proposed to solve the problem as well. With assessment on three levels: the entire distribution network, a sub-area of the network and a load bus, the security level of current operation mode and load transfer capability during outage are thus obtained. The results can provide guidelines for prevention control, as well as restoration control. Simulation results show that the method is simple, fast and can be applied to distribution networks belonged to any voltage level while taking into account all of the operation constraints.
基金supported by the State Grid Science&Technology Project of China(5400-202224153A-1-1-ZN).
文摘Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability.
基金supported in part by the U.S.Department of Energy’s Office of Energy Efficiency and Renewable Energy(EERE)Solar Energy Technologies Office Award(No.38456)in part by the National Science Foundation(No.OIA-2134840).
文摘Quantum power flow(QPF)offers an inspiring direction for overcoming the computation challenge of power flow through quantum computing.However,the practical implementation of existing QPF algorithms in today’s noisy-intermediate-scale quantum(NISQ)era remains limited because of their sensitivity to noise.This paper establishes an NISQ-QPF algorithm that enables power flow computation on noisy quantum devices.The main contributions include:(1)a variational quantum circuit(VQC)-based alternating current(AC)power flow formulation,which enables QPF using short-depth quantum circuits;(2)NISQ-compatible QPF solvers based on the variational quantum linear solver(VQLS)and modified fast decoupled power flow;and(3)an error-resilient QPF scheme to relieve the QPF iteration deviations caused by noise;(3)a practical NISQ-QPF framework for implementable and reliable power flow analysis on noisy quantum machines.Extensive simulation tests validate the accuracy and generality of NISQ-QPF for solving practical power flow on IBM’s real,noisy quantum computers.
文摘As power system interconnections become more prevalent, there has been an increase in use of thyristor controlled shunt connected compensation devices for dynamic power compensation and enhancement of real power transmission capacity. In this paper, an enhancement technique of real power transfer capacity of transmission lines is presented. A SVC (static var compensator) is designed and applied to a simple power system for this purpose. Increase in power flow and improvement in bus voltage profile are observed after using the SVC. Stability analysis of the system after experiencing fault as well as consequent fault clearance by time domain analysis has also beeu performed and satisfactory results are obtained.