A vortex is intuitively recognized as the rotational/swirling motion of fluids,but a rigorous and universally-accepted definition is still not available.Vorticity tube/filament has been regarded equivalent to a vortex...A vortex is intuitively recognized as the rotational/swirling motion of fluids,but a rigorous and universally-accepted definition is still not available.Vorticity tube/filament has been regarded equivalent to a vortex since Helmholtz proposed the concepts of vorticity tube/filament in 1858 and the vorticity-based methods can be categorized as the first generation of vortex identification methods.During the last three decades,a lot of vortex identification methods,including 0,A,and Aci criteria,have been proposed to overcome the problems associated with the vorticity-based methods.Most of these criteria are based on the Cauchy-Stokes decomposition and/or eigenvalues of the velocity gradient tensor and can be considered as the second generation of vortex identification methods.Starting from 2014,the Vortex and Turbulence Research Team at the University of Texas at Arlington(the UTA team)focus on the development of a new generation of vortex identification methods.The first fruit of this effort,a new Omega(/2)vortex identification method,which defined a vortex as a connected region where the vorticity overtakes the deformation,was published in 2016.In 2017 and 2018,a Liutex(previously called Rortex)vector was proposed to provide a mathematical definition of the local rigid rotation part of the fluid motion,including both the local rotational axis and the rotational strength.Liutex/Rortex is a new physical quantity with scalar,vector and tensor forms exactly representing the local rigid rotation of fluids.Meanwhile,a decomposition of the vorticity to a rotational part namely Liutex/Rortex and an anti-symmetric shear part(RS decomposition)was introduced in 2018,and a universal decomposition of the velocity gradient tensor to a rotation part(7?)and a non-rotation part(NR、was also given in 2018 as a counterpart of the traditional Cauchy-Stokes decomposition.Later in early 2019,a Liutex/Rortex based Omega method called Omega-Liutex,which combines the respective advantages of both Liutex/Rortex and Omega methods,was developed.And a latest objective Omega method,which is still under development,is also briefly introduced.These advances are classified as the third generation of vortex identification methods in the current paper.To elaborate the advantages of the third-generation methods,six core issues for vortex definition and identification have been raised,including:(1)the absolute strength,(2)the relative strength,(3)the rotational axis,(4)the vortex core center location,(5)the vortex core size,(6)the vortex boundary.The new third generation of vortex identification methods can provide reasonable answers to these questions,while other vortex identification methods fail to answer all questions except for the approximation of vortex boundaries.The purpose of the current paper is to summarize the main ideas and methods of the third generation of vortex identification methods rather than to conduct a comprehensive review on the historical development of vortex identification methods.展开更多
The turbulent flow in the draft tube of a Francis turbine is very complicated while working under off-design conditions. Although the off-design conditions were widely studied, the vortex core line in the draft tube o...The turbulent flow in the draft tube of a Francis turbine is very complicated while working under off-design conditions. Although the off-design conditions were widely studied, the vortex core line in the draft tube of a Francis turbine with splitter blades is not well understood, especially the vortex rope property. This letter presents a prediction of the behavior of the vortex rope in the draft tube of the Francis-99 turbine obtained by the computational fluid dynamics (CFD), where the Liutex/Rortex method, as the most recent vortex definition, is applied to analyze the periodical precession of the vortex rope in the draft tube cone. The advantage of this Liutex/Rortex method is shown by its enhanced ability to represent the vortex rope structurewith the vortex-core lines. Furthermore, since it seems to be very hard to define a sharp boundary surface for the whole vortex structure, it is advantageousfocusing only on the vortex core line,by which different vortex structures can be clearly differentiated. The evolution of the vortex core and the process of the vortex breakdown in the draft tube are revealed, which might help to comprehend the development of the turbulent flow in the draft tube.展开更多
本文回顾了涡定义和涡识别方法的发展历史,着重介绍了作者UTA(University of Texas at Arlington)团队及其合作者在涡科学和湍流研究的一些最新学术创新成果。UTA团队发现了可以定量描述流体刚性转动部分的物理量——Liutex向量,其主要...本文回顾了涡定义和涡识别方法的发展历史,着重介绍了作者UTA(University of Texas at Arlington)团队及其合作者在涡科学和湍流研究的一些最新学术创新成果。UTA团队发现了可以定量描述流体刚性转动部分的物理量——Liutex向量,其主要思想是把流体刚性转动从流体运动中提取出来,进而用Liutex来定义和识别涡结构,并已在广泛应用中证明了其作为涡识别方法的优越性。基于Liutex向量可以进一步研究涡量分解、速度梯度张量分解、流体运动分解、湍流结构、湍流生成机理以及旋涡的科学识别,为流体运动学的发展开辟了广阔的研究空间。区别于第一代涡识别方法和第二代涡识别方法,Liutex是一个向量,其方向代表当地转轴,大小代表当地流体刚性旋转角速度的二倍。本文详细介绍了基于Liutex向量的第三代涡的定义和识别方法,包括Liutex等值面、Liutex-Omega等值面、Liutex向量线、Liutex涡核线、以及最新发现的中低雷诺数湍流边界层中的Liutex-5/3幂次相似律,其发现很大程度上扩大了传统湍流能谱幂次律的适用范围,对建立湍流模型具有重要意义。展开更多
通过开源多物理场模拟与设计集成软件平台SU2(Stanford University Unstructured),使用格点型有限体积格式,研究了来流攻角12°,雷诺数为Re=2×10^6下NACA0012半矩形翼扰流问题。通过涡向量Rortex/Liutex揭示了方形翼尖纯刚体...通过开源多物理场模拟与设计集成软件平台SU2(Stanford University Unstructured),使用格点型有限体积格式,研究了来流攻角12°,雷诺数为Re=2×10^6下NACA0012半矩形翼扰流问题。通过涡向量Rortex/Liutex揭示了方形翼尖纯刚体旋转涡的形成与发展,次涡与主涡的合并,并与涡量进行了比较。结果表明:钝体矩形翼翼尖的两个锋利奇异边产生Rortex/Liutex涡,且Rortex/Liutex表示的次涡与主涡的合并与相互作用要晚于涡量;此外,除了奇异边外的翼尖侧面,虽具有较高涡量,但贡献了流体的剪切或拉伸。展开更多
文摘A vortex is intuitively recognized as the rotational/swirling motion of fluids,but a rigorous and universally-accepted definition is still not available.Vorticity tube/filament has been regarded equivalent to a vortex since Helmholtz proposed the concepts of vorticity tube/filament in 1858 and the vorticity-based methods can be categorized as the first generation of vortex identification methods.During the last three decades,a lot of vortex identification methods,including 0,A,and Aci criteria,have been proposed to overcome the problems associated with the vorticity-based methods.Most of these criteria are based on the Cauchy-Stokes decomposition and/or eigenvalues of the velocity gradient tensor and can be considered as the second generation of vortex identification methods.Starting from 2014,the Vortex and Turbulence Research Team at the University of Texas at Arlington(the UTA team)focus on the development of a new generation of vortex identification methods.The first fruit of this effort,a new Omega(/2)vortex identification method,which defined a vortex as a connected region where the vorticity overtakes the deformation,was published in 2016.In 2017 and 2018,a Liutex(previously called Rortex)vector was proposed to provide a mathematical definition of the local rigid rotation part of the fluid motion,including both the local rotational axis and the rotational strength.Liutex/Rortex is a new physical quantity with scalar,vector and tensor forms exactly representing the local rigid rotation of fluids.Meanwhile,a decomposition of the vorticity to a rotational part namely Liutex/Rortex and an anti-symmetric shear part(RS decomposition)was introduced in 2018,and a universal decomposition of the velocity gradient tensor to a rotation part(7?)and a non-rotation part(NR、was also given in 2018 as a counterpart of the traditional Cauchy-Stokes decomposition.Later in early 2019,a Liutex/Rortex based Omega method called Omega-Liutex,which combines the respective advantages of both Liutex/Rortex and Omega methods,was developed.And a latest objective Omega method,which is still under development,is also briefly introduced.These advances are classified as the third generation of vortex identification methods in the current paper.To elaborate the advantages of the third-generation methods,six core issues for vortex definition and identification have been raised,including:(1)the absolute strength,(2)the relative strength,(3)the rotational axis,(4)the vortex core center location,(5)the vortex core size,(6)the vortex boundary.The new third generation of vortex identification methods can provide reasonable answers to these questions,while other vortex identification methods fail to answer all questions except for the approximation of vortex boundaries.The purpose of the current paper is to summarize the main ideas and methods of the third generation of vortex identification methods rather than to conduct a comprehensive review on the historical development of vortex identification methods.
文摘The turbulent flow in the draft tube of a Francis turbine is very complicated while working under off-design conditions. Although the off-design conditions were widely studied, the vortex core line in the draft tube of a Francis turbine with splitter blades is not well understood, especially the vortex rope property. This letter presents a prediction of the behavior of the vortex rope in the draft tube of the Francis-99 turbine obtained by the computational fluid dynamics (CFD), where the Liutex/Rortex method, as the most recent vortex definition, is applied to analyze the periodical precession of the vortex rope in the draft tube cone. The advantage of this Liutex/Rortex method is shown by its enhanced ability to represent the vortex rope structurewith the vortex-core lines. Furthermore, since it seems to be very hard to define a sharp boundary surface for the whole vortex structure, it is advantageousfocusing only on the vortex core line,by which different vortex structures can be clearly differentiated. The evolution of the vortex core and the process of the vortex breakdown in the draft tube are revealed, which might help to comprehend the development of the turbulent flow in the draft tube.
文摘本文回顾了涡定义和涡识别方法的发展历史,着重介绍了作者UTA(University of Texas at Arlington)团队及其合作者在涡科学和湍流研究的一些最新学术创新成果。UTA团队发现了可以定量描述流体刚性转动部分的物理量——Liutex向量,其主要思想是把流体刚性转动从流体运动中提取出来,进而用Liutex来定义和识别涡结构,并已在广泛应用中证明了其作为涡识别方法的优越性。基于Liutex向量可以进一步研究涡量分解、速度梯度张量分解、流体运动分解、湍流结构、湍流生成机理以及旋涡的科学识别,为流体运动学的发展开辟了广阔的研究空间。区别于第一代涡识别方法和第二代涡识别方法,Liutex是一个向量,其方向代表当地转轴,大小代表当地流体刚性旋转角速度的二倍。本文详细介绍了基于Liutex向量的第三代涡的定义和识别方法,包括Liutex等值面、Liutex-Omega等值面、Liutex向量线、Liutex涡核线、以及最新发现的中低雷诺数湍流边界层中的Liutex-5/3幂次相似律,其发现很大程度上扩大了传统湍流能谱幂次律的适用范围,对建立湍流模型具有重要意义。
文摘通过开源多物理场模拟与设计集成软件平台SU2(Stanford University Unstructured),使用格点型有限体积格式,研究了来流攻角12°,雷诺数为Re=2×10^6下NACA0012半矩形翼扰流问题。通过涡向量Rortex/Liutex揭示了方形翼尖纯刚体旋转涡的形成与发展,次涡与主涡的合并,并与涡量进行了比较。结果表明:钝体矩形翼翼尖的两个锋利奇异边产生Rortex/Liutex涡,且Rortex/Liutex表示的次涡与主涡的合并与相互作用要晚于涡量;此外,除了奇异边外的翼尖侧面,虽具有较高涡量,但贡献了流体的剪切或拉伸。