Objective The aim was to reveal relationship between lithological character soil and productivity of Cunninghamia lanceolata and lay a foundation for systemic management of C. lanceolata fast-growing and high yield pl...Objective The aim was to reveal relationship between lithological character soil and productivity of Cunninghamia lanceolata and lay a foundation for systemic management of C. lanceolata fast-growing and high yield plantation. Method By using experimental ecology method and variance analysis, the biomass and growth of planting eleven years' C. lanceolata on the soils with six different lithologicel characters were studied. Result The effects of soils with six different lithological characters on the height, diameter growth and biomass of C. lanceolata were different, in which the growth order of C. lanceolata was: Feldspathic quartzy sandstone ( average height 523. 270 cm, average diameter 4.720 cm, average individual biomass 5.059kg) 〉 Basalt ( average height 511. 570 cm, average diameter 4.650 cm, average individual biomass 4.848 kg) 〉 Quartzy sandstone 〉 Blastopsammite 〉 The Quarternary Period red clay 〉 Coal-series siliceous sand-shale, and the difference was smaller between the last two lithological characters. Conclusion Feldspathic quartzy sandstone and Basalt are beneficial to C. lanceolata.展开更多
Six representative parent rocks of sand, including limestone, quartzite, gneisses, granite, Basalt and Marble were selected to conduct a systematical research on the effects of various lithologies of manufactured sand...Six representative parent rocks of sand, including limestone, quartzite, gneisses, granite, Basalt and Marble were selected to conduct a systematical research on the effects of various lithologies of manufactured sand on the workability, mechanism properties, volume stability and durability of manufacturedsand concrete. The experimental results show that the strength of manufactured-sand concrete is slightly higher than that of natural-sand concrete. Furthermore, substituting 15% cement of the concrete mixture with equal quantity of the six different lithology stone powder respectively, the data indicated that they can improve the concrete’s workability, postpone the plastic cracking time, enhance the anti-cracking grade, and have no obvious effect on the properties of antifreeze and sulfate attack resistance but reduce the capability to resist chloride ion penetration. Moreover, the differences in concrete’s workability, mechanism properties, volume stability and durability caused by various lithologies of manufactured sand and stone powder were not significant and the influence of lithology variety on the macro properties of concrete could be neglected eventually.展开更多
基金Supported by the National Key Technology R&D Program during the11~(th)Five-years Plan(2006BAD24B0301)~~
文摘Objective The aim was to reveal relationship between lithological character soil and productivity of Cunninghamia lanceolata and lay a foundation for systemic management of C. lanceolata fast-growing and high yield plantation. Method By using experimental ecology method and variance analysis, the biomass and growth of planting eleven years' C. lanceolata on the soils with six different lithologicel characters were studied. Result The effects of soils with six different lithological characters on the height, diameter growth and biomass of C. lanceolata were different, in which the growth order of C. lanceolata was: Feldspathic quartzy sandstone ( average height 523. 270 cm, average diameter 4.720 cm, average individual biomass 5.059kg) 〉 Basalt ( average height 511. 570 cm, average diameter 4.650 cm, average individual biomass 4.848 kg) 〉 Quartzy sandstone 〉 Blastopsammite 〉 The Quarternary Period red clay 〉 Coal-series siliceous sand-shale, and the difference was smaller between the last two lithological characters. Conclusion Feldspathic quartzy sandstone and Basalt are beneficial to C. lanceolata.
基金Funded by the National West Communication Construction Technology Project(No.2013 318 354 190)
文摘Six representative parent rocks of sand, including limestone, quartzite, gneisses, granite, Basalt and Marble were selected to conduct a systematical research on the effects of various lithologies of manufactured sand on the workability, mechanism properties, volume stability and durability of manufacturedsand concrete. The experimental results show that the strength of manufactured-sand concrete is slightly higher than that of natural-sand concrete. Furthermore, substituting 15% cement of the concrete mixture with equal quantity of the six different lithology stone powder respectively, the data indicated that they can improve the concrete’s workability, postpone the plastic cracking time, enhance the anti-cracking grade, and have no obvious effect on the properties of antifreeze and sulfate attack resistance but reduce the capability to resist chloride ion penetration. Moreover, the differences in concrete’s workability, mechanism properties, volume stability and durability caused by various lithologies of manufactured sand and stone powder were not significant and the influence of lithology variety on the macro properties of concrete could be neglected eventually.