Lithium-ion batteries are considered the substantial electrical storage element for electric vehicles(EVs). The battery model is the basis of battery monitoring, efficient charging, and safety management. Non-linearmo...Lithium-ion batteries are considered the substantial electrical storage element for electric vehicles(EVs). The battery model is the basis of battery monitoring, efficient charging, and safety management. Non-linearmodelling is the key to representing the battery and its dynamic internal parameters and performance. This paperproposes a smart scheme to model the lithium-polymer ion battery while monitoring its present charging currentand terminal voltage at various ambient conditions (temperature and relative humidity). Firstly, the suggestedframework investigated the impact of temperature and relative humidity on the charging process using the constantcurrent-constant voltage (CC-CV) charging protocol. This will be followed by monitoring the battery at thesurrounding operating temperature and relative humidity. Hence, efficient non-linear modelling of the EV batterydynamic behaviour using the Hammerstein-Wiener (H-W) model is implemented. The H-W model is considered ablack box model that can represent the battery without any mathematical equivalent circuit model which reducesthe computation complexity. Finally, the model beholds the boundaries of the charging process, not affecting onthe lifetime of the battery. Several dynamic models are applied and tested experimentally to ensure theeffectiveness of the proposed scheme under various ambient conditions where the temperature is fixed at40°C and the relative humidity (RH) at 35%, 52%, and 70%. The best fit using the H-W model reached 91.83% todescribe the dynamic behaviour of the battery with a maximum percentage of error 0.1 V which is in goodagreement with the literature survey. Besides, the model has been scaled up to represent a real EV and expressedthe significance of the proposed H-W model.展开更多
针对原有的锂电池组荷电状态(state of charge,SOC)估算方式是在电池放电后进行测量,在电池内阻数值较大时难以获取明确的开路电压,导致其在锂电池组SOC估算上具有误差等问题,设计了基于分段聚合和卡尔曼滤波的锂电池组SOC估算方法.在...针对原有的锂电池组荷电状态(state of charge,SOC)估算方式是在电池放电后进行测量,在电池内阻数值较大时难以获取明确的开路电压,导致其在锂电池组SOC估算上具有误差等问题,设计了基于分段聚合和卡尔曼滤波的锂电池组SOC估算方法.在构建等效电路模型的基础上,辨识锂电池参数,并定义开路电压等锂电池组SOC估算指标.分段聚合切换锂电池反馈路径,利用卡尔曼滤波线性递推估算锂电池组SOC数值.结果表明:以锂电池脉冲放电过程为测试条件,提出的方法估算结果与实际SOC值基本一致,在SOC为0.6时,该方法能将SOC估算相对误差控制在0~0.4%.展开更多
文摘Lithium-ion batteries are considered the substantial electrical storage element for electric vehicles(EVs). The battery model is the basis of battery monitoring, efficient charging, and safety management. Non-linearmodelling is the key to representing the battery and its dynamic internal parameters and performance. This paperproposes a smart scheme to model the lithium-polymer ion battery while monitoring its present charging currentand terminal voltage at various ambient conditions (temperature and relative humidity). Firstly, the suggestedframework investigated the impact of temperature and relative humidity on the charging process using the constantcurrent-constant voltage (CC-CV) charging protocol. This will be followed by monitoring the battery at thesurrounding operating temperature and relative humidity. Hence, efficient non-linear modelling of the EV batterydynamic behaviour using the Hammerstein-Wiener (H-W) model is implemented. The H-W model is considered ablack box model that can represent the battery without any mathematical equivalent circuit model which reducesthe computation complexity. Finally, the model beholds the boundaries of the charging process, not affecting onthe lifetime of the battery. Several dynamic models are applied and tested experimentally to ensure theeffectiveness of the proposed scheme under various ambient conditions where the temperature is fixed at40°C and the relative humidity (RH) at 35%, 52%, and 70%. The best fit using the H-W model reached 91.83% todescribe the dynamic behaviour of the battery with a maximum percentage of error 0.1 V which is in goodagreement with the literature survey. Besides, the model has been scaled up to represent a real EV and expressedthe significance of the proposed H-W model.
文摘针对原有的锂电池组荷电状态(state of charge,SOC)估算方式是在电池放电后进行测量,在电池内阻数值较大时难以获取明确的开路电压,导致其在锂电池组SOC估算上具有误差等问题,设计了基于分段聚合和卡尔曼滤波的锂电池组SOC估算方法.在构建等效电路模型的基础上,辨识锂电池参数,并定义开路电压等锂电池组SOC估算指标.分段聚合切换锂电池反馈路径,利用卡尔曼滤波线性递推估算锂电池组SOC数值.结果表明:以锂电池脉冲放电过程为测试条件,提出的方法估算结果与实际SOC值基本一致,在SOC为0.6时,该方法能将SOC估算相对误差控制在0~0.4%.