期刊文献+
共找到31,588篇文章
< 1 2 250 >
每页显示 20 50 100
Recycling technologies of spent lithium-ion batteries and future directions:A review 被引量:4
1
作者 Xue-song GAO Meng WU +5 位作者 Guang-jin ZHAO Kun-hong GU Jia-jia WU Hong-bo ZENG Wen-qing QIN Jun-wei HAN 《Transactions of Nonferrous Metals Society of China》 2025年第1期271-295,共25页
Lithium-ion batteries(LIBs)are the most popular energy storage devices due to their high energy density,high operating voltage,and long cycle life.However,green and effective recycling methods are needed because LIBs ... Lithium-ion batteries(LIBs)are the most popular energy storage devices due to their high energy density,high operating voltage,and long cycle life.However,green and effective recycling methods are needed because LIBs contain heavy metals such as Co,Ni,and Mn and organic compounds inside,which seriously threaten human health and the environment.In this work,we review the current status of spent LIB recycling,discuss the traditional pyrometallurgical and hydrometallurgical recovery processes,and summarize the existing short-process recovery technologies such as salt-assisted roasting,flotation processes,and direct recycling.Finally,we analyze the problems and potential research prospects of the current recycling process,and point out that the multidisciplinary integration of recycling will become the mainstream technology for the development of spent LIBs. 展开更多
关键词 spent lithium battery short-process recycling secondary resources PRETREATMENT metal recovery
在线阅读 下载PDF
Functionalized Separators Boosting Electrochemical Performances for Lithium Batteries 被引量:2
2
作者 Zixin Fan Xiaoyu Chen +5 位作者 Jingjing Shi Hui Nie Xiaoming Zhang Xingping Zhou Xiaolin Xie Zhigang Xue 《Nano-Micro Letters》 2025年第6期55-92,共38页
The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separat... The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separators with improved mechanical and electrochemical characteristics.This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques.In terms of electrolyte wettability and adhesion of the coating materials,we provide an overview of the current status of research on coated separators,in situ modified separators,and grafting modified separators,and elaborate additional performance parameters of interest.The characteristics of inorganics coated separators,organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared.Future directions regarding new modified materials,manufacturing process,quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries. 展开更多
关键词 SEPARATORS Polymer electrolytes lithium batteries Electrochemical performances FUNCTIONALIZATION
在线阅读 下载PDF
Customizing solid electrolyte interphase with bilayer spatial structure to mitigate swelling towards long-term life lithium battery 被引量:1
3
作者 Dongni Zhao Hongcheng Liang +6 位作者 Shumin Wu Yin Quan Xinyi Hu Jingni Li Peng Wang Xiaoling Cui Shiyou Li 《Journal of Energy Chemistry》 2025年第6期702-712,I0015,共12页
The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the ra... The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the rapid battery performance degradation.Here,we customize two SEIs with different spatial structures(bilayer and mosaic)by simply regulating the proportion of additive fluoroethylene carbonate.Surprisingly,due to the uniform distribution of dense inorganic nano-crystals in the inner,the bilayer SEI exhibits low-swelling and excellent mechanical properties,so the undesirable side reactions of the electrolyte are effectively suppressed.In addition,we put forward the growth rate of swelling ratio(GSR)as a key indicator to reveal the swelling change in SEI.The GSR of bilayer SEI merely increases from1.73 to 3.16 after the 300th cycle,which enables the corresponding graphite‖Li battery to achieve longer cycle stability.The capacity retention is improved by 47.5% after 300 cycles at 0.5 C.The correlation among SEI spatial structure,swelling behavior,and battery performance provides a new direction for electrolyte optimization and interphase structure design of high energy density batteries. 展开更多
关键词 lithium battery SEI film Spatial structure Swelling behavior Cycle-stable
在线阅读 下载PDF
Research progress of lignin-derived materials in lithium/sodium ion batteries 被引量:1
4
作者 Jingke Zhang Hengxue Xiang +2 位作者 Zhiwei Cao Shichao Wang Meifang Zhu 《Green Energy & Environment》 2025年第2期322-344,共23页
With the increase of energy consumption,the shortage of fossil resource,and the aggravation of environmental pollution,the development of cost-effective and environmental friendly bio-based energy storage devices has ... With the increase of energy consumption,the shortage of fossil resource,and the aggravation of environmental pollution,the development of cost-effective and environmental friendly bio-based energy storage devices has become an urgent need.As the second most abundant natural polymer found in nature,lignin is mainly produced as the by-product of paper pulping and bio-refining industries.It possesses several inherent advantages,such as low-cost,high carbon content,abundant functional groups,and bio-renewable,making it an attractive candidate for the rechargeable battery material.Consequently,there has been a surge of research interest in utilizing lignin or lignin-based carbon materials as the components of lithium-ion(LIBs)or sodium-ion batteries(SIBs),including the electrode,binder,separator,and electrolyte.This review provides a comprehensive overview on the research progress of lignin-derived materials used in LIBs/SIBs,especially the application of lignin-based carbons as the anodes of LIBs/SIBs.The preparation methods and properties of lignin-derived materials with different dimensions are systemically discussed,which emphasizes on the relationship between the chemical/physical structures of lignin-derived materials and the performances of LIBs/SIBs.The current challenges and future prospects of lignin-derived materials in energy storage devices are also proposed. 展开更多
关键词 Lignin-based carbons lithium battery Sodium battery Chemical structure evolution
在线阅读 下载PDF
Functionalization of two-dimensional vermiculite composite materials for improved adsorption and catalytic conversion reaction of soluble polysulfides in lithium-sulfur batteries 被引量:1
5
作者 Tiancheng Wang Zehao Shi +5 位作者 Furan Wang Weiya Li Guohong Kang Wei Liu Seung-Taek Myung Yongcheng Jin 《Journal of Energy Chemistry》 2025年第3期586-596,共11页
In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadin... In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadings.Here,we propose a novel separator structure with an interlayer composed of a vermiculite nanosheet combined with Ketjen Black(VMT@KB)for LSBs,facilitating efficient adsorption and rapid catalytic conversion toward lithium polysulfides(LiPSs).The VMT@KB nanosheets with an electrical double-layer structure and electronic conductivity are obtained through a high-temperature peeling process and Li^(+)exchange treatment in LiCl solution,followed by a mechanical combination process with KB.The results demonstrate that incorporating VMT@KB as an interlayer on a conventional separator enhances the conductivity and limits the LiPSs in the cathode region.The Li-S cell with VMT@KB interlayer shows satisfactory cycle and rate performance,especially in high sulfur loading.It exhibits a remarkable initial discharge capacity of 1225 mAh g^(-1)at 0.5 C and maintains a capacity of 816 mAh g^(-1)after 500 cycles.Besides,the discharge capacity remains 462 mAh g^(-1)even at 6 C.Moreover,the cell with high sulfur loading(8.2 mg cm^(-2))enables stable cycling for 100 cycles at 0.1 C with a discharge capacity of over1000 mAh g^(-1). 展开更多
关键词 VERMICULITE Li-S batteries Modified separators Electrical double layer lithium polysulfides
在线阅读 下载PDF
Recent progress in constructing fluorinated solid-electrolyte interphases for stable lithium metal anodes
6
作者 Di Zhang Pengfei Lv +2 位作者 Wei Qin Xin He Yuanhua He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期270-291,共22页
Lithium metal batteries(LMBs)are emerging as a promising energy storage solution owing to their high energy density and specific capacity.However,the non-uniform plating of lithium and the potential rupture of the sol... Lithium metal batteries(LMBs)are emerging as a promising energy storage solution owing to their high energy density and specific capacity.However,the non-uniform plating of lithium and the potential rupture of the solid-electrolyte interphase(SEI)during extended cycling use may result in dendrite growth,which can penetrate the separator and pose significant short-circuit risks.Forming a stable SEI is essential for the long-term operation of the batteries.Fluorine-rich SEI has garnered significant attention for its ability to effectively passivate electrodes,regulate lithium deposition,and inhibit electrolyte corrosion.Understanding the structural components and preparation methods of existing fluorinated SEI is crucial for optimizing lithium metal anode performance.This paper reviews the research on optimizing LiF passivation interfaces to protect lithium metal anodes.It focuses on four types of compositions in fluorinated SEI that work synergistically to enhance SEI performance.For instance,combining compounds with LiF can further enhance the mechanical strength and ionic conductivity of the SEI.Integrating metals with LiF significantly improves electrochemical performance at the SEI/anode interface,with a necessary focus on reducing electron tunneling risks.Additionally,incorporating polymers with LiF offers balanced improvements in interfacial toughness and ionic conductivity,though maintaining structural stability over long cycles remains a critical area for future research.Although alloys combined with LiF increase surface energy and lithium affinity,challenges such as dendrite growth and volume expansion persist.In summary,this paper emphasizes the crucial role of interfacial structures in LMBs and offers comprehensive guidance for future design and development efforts in battery technology. 展开更多
关键词 LIF lithium metal anodes solid-electrolyte interphase interface cycling stability
在线阅读 下载PDF
Suppressing high voltage chemo-mechanical degradation in single crystal nickel-rich cathodes for high-performance all-solid-state lithium batteries 被引量:1
7
作者 Yirong Xiao Le Yang +5 位作者 Chaoyuan Zeng Ze Hua Shuangquan Qu Niaz Ahmad Ruiwen Shao Wen Yang 《Journal of Energy Chemistry》 2025年第3期377-385,共9页
Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress ... Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles. 展开更多
关键词 Single crystal nickel-rich oxide cathode Lattice stretches and distortions Reaction heterogeneity Percolation network All-solid-state lithium batteries
在线阅读 下载PDF
Porous Organic Cage‑Based Quasi‑Solid‑State Electrolyte with Cavity‑Induced Anion‑Trapping Effect for Long‑Life Lithium Metal Batteries
8
作者 Wei-Min Qin Zhongliang Li +7 位作者 Wen‑Xia Su Jia‑Min Hu Hanqin Zou Zhixuan Wu Zhiqin Ruan Yue‑Peng Cai Kang Li Qifeng Zheng 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期376-386,共11页
Porous organic cages(POCs)with permanent porosity and excellent host–vip property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testifie... Porous organic cages(POCs)with permanent porosity and excellent host–vip property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries. 展开更多
关键词 Porous organic cage Cavity-induced anion-trapping Quasi-solid-state electrolyte Homogeneous Li+flux lithium metal battery
在线阅读 下载PDF
Unveiling solid-solid contact states in all-solid-state lithium batteries:An electrochemical impedance spectroscopy viewpoint 被引量:1
9
作者 Jin-Liang Li Liang Shen +9 位作者 Zi-Ning Cheng Jun-Dong Zhang Ling-Xuan Li Yu-Tong Zhang Yan-Bin Gao Chunli Guo Xiang Chen Chen-Zi Zhao Rui Zhang Qiang Zhang 《Journal of Energy Chemistry》 2025年第2期16-22,I0002,共8页
All-solid-state lithium batteries(ASSLBs)are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety.The solid-solid contact between lithium metal and solid... All-solid-state lithium batteries(ASSLBs)are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety.The solid-solid contact between lithium metal and solid electrolyte plays a vital role in the performance of working ASSLBs,which is challenging to investigate quantitatively by experimental approach.This work proposed a quantitative model based on the finite element method for electrochemical impedance spectroscopy simulation of different solid-solid contact states in ASSLBs.With the assistance of an equivalent circuit model and distribution of relaxation times,it is discovered that as the number of voids and the sharpness of cracks increase,the contact resistance Rcgrows and ultimately dominates the battery impedance.Through accurate fitting,inverse proportional relations between contact resistance Rcand(1-porosity)as well as crack angle was disclosed.This contribution affords a fresh insight into clarifying solid-solid contact states in ASSLBs. 展开更多
关键词 Electrochemical impedance spectroscopy All-solid-state lithium batteries Solid-solid contacts Finite element method Equivalent circuit model Distribution of relaxation times
在线阅读 下载PDF
Optimization of lithium extraction solar pond in Zabuye Salt Lake: Theoretical calculation combined with field experiments 被引量:1
10
作者 Tao Ding Zhen Nie +6 位作者 Qian Wu Jiang-jiang Yu Ling-zhong Bu Yun-sheng Wang En-yuan Xing Mian-ping Zheng Yu-bin Li 《China Geology》 2025年第1期26-38,共13页
This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducte... This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducted experiments to investigate the influence of four factors related to solar pond structure on the crystallization of Li_(2)CO_(3) and their pairwise interactions.Computational Fluid Dynamics(CFD)simulations of the flow field within the solar pond were performed using COMSOL Multiphysics software to compare temperature distributions before and after optimization.The results indicate that the optimal structure for lithium extraction from the Zabuye Salt Lake solar ponds includes UCZ(Upper Convective Zone)thickness of 53.63 cm,an LCZ(Lower Convective Zone)direct heating temperature of 57.39℃,a CO32−concentration of 32.21 g/L,and an added soda ash concentration of 6.52 g/L.Following this optimized pathway,the Li_(2)CO_(3) precipitation increased by 7.34% compared to the initial solar pond process,with a 33.33% improvement in lithium carbonate crystallization rate.This study demonstrates the feasibility of optimizing lithium extraction solar pond structures,offering a new approach for constructing such ponds in salt lakes.It provides valuable guidance for the efficient extraction of lithium resources from carbonate-type salt lake brines. 展开更多
关键词 Salt lake Solar pond lithium extraction Crystallization rate Box-Behnken Computational fluid dynamics Response surface Zabuye salt lake Mineral exploration engineering
在线阅读 下载PDF
Ultra-stable lithium-sulfur batteries using nitrogen-doped porous carbon nanosheets implanted with both Fe and Ni
11
作者 Reddeppa Nadimicherla TANG You-chen +1 位作者 LU Yu-heng LIU Ru-liang 《新型炭材料(中英文)》 北大核心 2025年第1期188-199,共12页
The major problem with lithium-sulfur(Li-S)batteries is their poor cycling stability because of slow redox kinetics in the cathode and the growth of lithium dendrites on the anode.We report the production of 2D porous... The major problem with lithium-sulfur(Li-S)batteries is their poor cycling stability because of slow redox kinetics in the cathode and the growth of lithium dendrites on the anode.We report the production of 2D porous carbon nanosheets doped with both Fe and Ni(Fe/Ni-N-PCNSs)by an easy and template-free approach that solve this problem.Because of their ultrathin porous 2D structure and uniform distribution of Fe and Ni dopants,they capture polysulfides,speed up the sulfur redox reaction,and improve the material’s lithiophilicity,greatly suppressing the shuttling of polysulfides and dendrite growth on the lithium anode.As a result,it has an exceptional performance as a stable host for elemental sulfur and metallic lithium,producing a record long life of 1000 cycles with a very small capacity decay of 0.00025%per cycle in a Li-S battery and an excellent cycling stability of over 850 h with a small overpotential of>72 mV in a lithium metal battery.This work suggests the use of multifunctional-based 2D porous carbon nanosheets as a stable host for both elemental sulfur and metallic lithium to improve the Li-S battery per-formance. 展开更多
关键词 Li-S battery Porous carbon lithium metal battery NANOSHEETS Redox kinetics
在线阅读 下载PDF
The use of a ternary metal sulfide loading on carbon fibers as the sulfur host for high performance low-temperature lithium sulfur batteries
12
作者 HE Xin ZUO Huai-yang +4 位作者 XIAO Ru QU Zhuo-yan SUN Zhen-hua WANG Bao Li Feng 《新型炭材料(中英文)》 北大核心 2025年第1期167-177,共11页
The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nit... The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nitrogen-doped carbon fibers loaded with a ternary metal sulf-ide((Fe,Co,Ni)_(9)S_(8))for use as the sulfur host in Li-S batteries.This materi-al was prepared using transfer blot filter paper as the carbon precursor,thiourea as the source of nitrogen and sulfur,and FeCl_(3)·6H_(2)O,CoCl_(2)·6H_(2)O and NiCl_(2)·6H_(2)O as the metal ion sources.It was synthesized by an impreg-nation method followed by calcination.The nitrogen doping significantly in-creased the conductivity of the host,and the metal sulfides have excellent catalytic activities.Theoretical calculations,and adsorption and deposition experiments show that active sites on the surface of FCNS@NCFs selectively adsorb polysulfides,facilitate rapid adsorption and conversion,prevent cathode passivation and inhib-it the polysulfide shuttling.The FCNS@NCFs used as the sulfur host has excellent electrochemical properties.Its initial dis-charge capacity is 1639.0 mAh g^(−1) at 0.2 C and room temperature,and it remains a capacity of 1255.1 mAh g^(−1) after 100 cycles.At−20~C,it has an initial discharge capacity of 1578.5 mAh g^(−1) at 0.2 C,with a capacity of 867.5 mAh g^(−1) after 100 cycles.Its excellent performance at both ambient and low temperatures suggests a new way to produce high-performance low-temper-ature Li-S batteries. 展开更多
关键词 lithium sulfur batteries Low temperature Transition metal sulfides Sulfur conversion kinetics
在线阅读 下载PDF
White Light Emission Enhancement in Sm^(3+)-doped Lithium Aluminum Silicate Glasses by Ag Nanoparticles
13
作者 CHANG Yuanxing ZHANG Dandan +4 位作者 YIN Guanchao WANG Yesen WANG Mingzhong QIU Jianbei XU Yinsheng 《发光学报》 北大核心 2025年第7期1249-1261,共13页
Sm^(3+)-doped materials exhibit red and orange emissions in the visible light region,showing broad applica⁃tion prospects in both laser and display material fields.However,the inherent small emission and absorption cr... Sm^(3+)-doped materials exhibit red and orange emissions in the visible light region,showing broad applica⁃tion prospects in both laser and display material fields.However,the inherent small emission and absorption cross-sections of Sm^(3+)result in low luminous efficiency,posing challenges for achieving high-quality solid-state lighting.Here,the excellent white emission of Sm^(3+)doped lithium aluminum silicate(LAS)glass was realized by introducing the Ag aggregates through Ag ion exchange.Under 395 nm excitation,the Ag-doped samples exhibit significant fluo⁃rescence enhancement with color coordinates close to the equal energy white point E(0.33,0.33)and a color ren⁃dering index(CRI)of 81.8.The study reveals that the surface plasmon resonance(SPR)effect of Ag nanoparticles enhances the luminescence of Sm^(3+),while the energy transfer mechanism between Ag^(+)and Sm^(3+)also promotes fluores⁃cence enhancement.By adjusting the concentration of AgNO_(3) and the exchange time,a series of high-quality full-spectrum white light emissions were obtained,indicating that the Ag ion-exchanged Sm^(3+)-doped LAS glass has good application potential in the development of solid-state lighting devices.Moreover,variations in the excitation wave⁃length can effectively tune the emission color,further demonstrating the tunability and practicality of this material in optoelectronic applications. 展开更多
关键词 Ag NPs luminescent properties rare earth ions lithium aluminum silicate glass
在线阅读 下载PDF
Lithium resurrection:Synergistic thermal-decomposition and electric-drive strategy enabling inactive lithium fully recycling
14
作者 Shuzhe Yang Hao Luo +8 位作者 Yukun Li Qingqing Gao Hui Li Hongwei Cai Xiaodan Li Yanfen Wen Yujin Tong Tiefeng Liu Mi Lu 《Journal of Energy Chemistry》 2025年第3期842-851,共10页
Traditional pyrometallurgy and hydrometallurgy processes primarily focus on the recovery of valuable metals(Co,Ni,etc.)from spent lithium-ion batteries.However,these methods are not economical for recycling cheap LiFe... Traditional pyrometallurgy and hydrometallurgy processes primarily focus on the recovery of valuable metals(Co,Ni,etc.)from spent lithium-ion batteries.However,these methods are not economical for recycling cheap LiFePO_(4).Herein,a synergistic thermal-decomposition and electric-drive strategy is proposed to recover the whole spent LiFePO_(4)electrode by in-situ recovering the inactive lithium(dead lithium and trapped interlayer lithium).Firstly,the organic components in the dense solid electrolyte interface(SEI)are effectively decomposed through thermal-decomposition processing,exposing the dead lithium encapsulated within the SEI and recovering the electron channels between the dead lithium and graphite.Leveraging the difference between the Gibbs free energy of the dead lithium and graphite as the driving force facilitates the dead lithium inserting into the anode.Then,fully utilizing the remaining discharge capacity of the spent LiFePO_(4)cell,the inactive lithium is reinserted into LiFePO_(4)lattice during the electric-drive process.Consequently,the reactivated lithium content increases by more than 16%,reaching a capacity of 134.2 mA h g^(-1)compared to 115.2 mA h g^(-1)from degraded LiFePO_(4),allowing for effective participation in the subsequent cycling.This work provides new perspectives on highly profitable cycles with low energy and material consumption and a low carbon footprint. 展开更多
关键词 lithium recovery THERMAL-DECOMPOSITION Electric-drive Inactive lithium lithium resurrection
在线阅读 下载PDF
Modulation of desolvation barriers and inhibition of lithium dendrites based on lithophilic electrolyte additives for lithium metal anode
15
作者 Qian Wang Dong Yang +8 位作者 Wenxing Xin Yongqi Wang Wenchang Han Wengxiang Yan Chunman Yang Fei Wang Yiyong Zhang Ziyi Zhu Xue Li 《Chinese Chemical Letters》 2025年第6期641-647,共7页
Lithium metal has emerged as a highly promising anode material for enhancing the energy density of secondary batteries,attributed to its high theoretical specific capacity and low electrochemical potential.However,saf... Lithium metal has emerged as a highly promising anode material for enhancing the energy density of secondary batteries,attributed to its high theoretical specific capacity and low electrochemical potential.However,safety concerns related to lithium dendrite-induced short circuits and suboptimal electrochemical performance have impeded the commercial viability of lithium metal batteries.Current research efforts primarily focus on altering the solvated structure of Li+by modifying the current collector or introducing electrolyte additives to lower the nucleation barrier,expedite the desolvation process,and suppress the growth of lithium dendrites.Nevertheless,an integrated approach that combines the advantages of these two strategies remains elusive.In this study,we successfully employed metal-organic salt additives with lithophilic properties to accelerate the desolvation process,reduce the nucleation barrier of Li+,and modulate its solvated structure.This approach enhanced the inorganic compound content in the solid electrolyte interphase(SEI)on lithium foil surfaces,leading to stable Li+deposition and stripping.Specifically,Li||Cu cells demonstrated excellent cycle life and Coulombic efficiency(97.28%and 98.59%,respectively)at 0.5 m A/cm^(2)@0.5 m Ah/cm^(2)and 1 m A/cm^(2)@1 m Ah/cm^(2)for 410 and 240 cycles,respectively.Li||Li symmetrical cells showed no short circuit at 1 m A/cm^(2)@1 m Ah/cm^(2)for 1150 h,and Li||LFP full cells retained 68.9%of their capacity(104.6 m Ah/g)after 250 cycles at N/P(1.1:1.0)with a current density of 1C. 展开更多
关键词 lithium metal anode Electrolyte additives Lithophilic metal layer lithium ion desolvation lithium dendrites
原文传递
Impact of Current Collector’s Surface Energy on Lithium Deposition Morphology Using the Phase-Field Method
16
作者 Pengcheng Chen Yuyang Lu +3 位作者 Xinya Niu Guanjie Liang Linghui He Yong Ni 《Acta Mechanica Solida Sinica》 2025年第3期426-435,共10页
Anode-free lithium metal batteries are prone to capacity degradation and safety hazards due to the formation and growth of lithium dendrites.The interface between the current collector and deposited lithium plays a cr... Anode-free lithium metal batteries are prone to capacity degradation and safety hazards due to the formation and growth of lithium dendrites.The interface between the current collector and deposited lithium plays a critical role in preventing dendrite formation by regulating the thermodynamics and kinetics of lithium deposition.In this study,we develop a phase field model to investigate the influence of the current collector’s surface energy on lithium deposition morphology and its effect on the quality of the lithium metal film.It is demonstrated that a higher surface energy of the current collector promotes the growth of lithium metal along the surface of the current collector.Further,our simulation results show that a higher surface energy accelerates the formation of the lithium metal film while simultaneously reducing its surface roughness.By examining different contact angles and applied potentials,we construct a phase diagram of deposition morphology,illustrating that increased surface energy facilitates the dense and uniform deposition of lithium metal by preventing the formation of lithium filaments and voids.These findings provide new insights into the development and application of anode-free lithium metal batteries. 展开更多
关键词 Anode-free lithium metal batteries lithium deposition lithium filaments Surface energy Phase-field method
原文传递
Unravelling the prospects of electrolytes containing ionic liquids and deep eutectic solvents for next generation lithium batteries
17
作者 Shivani Ramesh Chand Thakur +2 位作者 Akhil Thakur Akshay Sharma Renuka Sharma 《Journal of Energy Chemistry》 2025年第6期482-500,I0012,共20页
The rising need for efficient and sustainable energy storage systems has led to increased interest in the use of advanced electrolytes consisting of deep eutectic solvents(DESs) and ionic liquids(ILs).These electrolyt... The rising need for efficient and sustainable energy storage systems has led to increased interest in the use of advanced electrolytes consisting of deep eutectic solvents(DESs) and ionic liquids(ILs).These electrolytes are appealing candidates for supercapacitors,next-generation lithium-ion batteries,and different energy storage systems because of their special features including non-flammability,low volatility,lowtoxicity,good electrochemical stability,and good thermal and chemical stability.This review explores the advantages of the proposed electrolytes by examining their potential to address the critical challenges in lithium battery technology,including safety concerns,energy density limitations,and operational stability.To achieve this,a comprehensive overview of the lithium salts commonly employed in rechargeable lithium battery electrolytes is presented.Moreover,key physicochemical and functional attributes of ILs and DESs,such as electrochemical stability,ionic conductivity,nonflammability,and viscosity are also discussed with a focus on how these features impact battery performance.The integration of lithium salts with ILs and DESs in modern lithium battery technologies,including lithium-ion(Li-ion) batteries,lithium-oxygen(Li-O_(2)) batteries,and lithium-sulfur(Li-S) batteries,are further examined in the study.Various electrochemical performance metrics including cycling stability,charge/discharge profiles,retention capacity and battery's couiombic efficiency(CE) are also analyzed for the above-mentioned systems.By summarizing recent advances and challenges,this review also highlights the potential of electrolytes consisting of DESs and ILs to enhance energy density,durability,and safety in future energy storage applications.Additionally future research directions,including the molecular optimization of ILs and DESs,optimizing lithium salt compositions,and developing scalable synthesis methods to accelerate their practical implementation in next-generation energy storage applications are also explored. 展开更多
关键词 Electrolytes Deepeutectic solvents lonic liquids lithium salts Electrochemical performance lithium batteries
在线阅读 下载PDF
A biomimetic host from a poultry bone structure enables dendrite-free lithium deposition
18
作者 Feiyang Yang Feng Wu +7 位作者 Zhaolin Gou Lijun Zheng Junce Wang Ziyi Chen Cunzhong Zhang Yuefeng Su Jun Lu Ying Yao 《Carbon Energy》 2025年第7期36-48,共13页
Lithium metal anode is one of the ideal anode materials for the next generation of high-energy-density battery systems.Unfortunately,the uneven nucleation of Li leads to dendrite growth and volume changes during cycli... Lithium metal anode is one of the ideal anode materials for the next generation of high-energy-density battery systems.Unfortunately,the uneven nucleation of Li leads to dendrite growth and volume changes during cycling,resulting in poor electrochemical performance and potential safety hazards,which hinder its practical application.In this work,a low-cost chicken-bonederived carbon material(CBC)with a biomimetic structure was designed and synthesized using a simple one-step carbonization method.Combining theoretical calculations and experimental results,the self-doped N and S heteroatoms in CBC are demonstrated to effectively reduce the binding energy with Li atoms and lower the nucleation overpotential.After uniform nucleation,the Li metal grows in a spherical shape without dendrites,which is related to the reduction of the local current density inside the biomimetic crosslinking structure of CBC.Benefiting from this favorable Li growth behavior,the Li@CBC electrode achieves ultra-low nucleation overpotential(15.5 mV at 0.1 mA cm^(−2))and superdense lithium deposition(zero volume expansion rate at a capacity of 2 mAh cm^(−2))without introducing additional lithiophilic sites.The CBC retains a high Coulombic efficiency of over 98%in 479 cycles(1 mA cm^(−2)and 1 mAh cm^(−2))when applied in a half-cell with Li,and shows an excellent rate and cycling performance when applied in a full cell with LiFePO4 as the cathode. 展开更多
关键词 biocarbon biomimetic structure carbon host lithium dendrite-free lithium metal anode
在线阅读 下载PDF
Weakly polar additives boost Li^(+)diffusion kinetics and alleviate electrolyte solvent decomposition for lithium metal batteries
19
作者 Mingguang Wu Guixian Liu +6 位作者 Jian He Jiandong Liu Shihan Qi Huaping Wang Rui Wen Abdullah N.Alodhayb Jianmin Ma 《Journal of Energy Chemistry》 2025年第5期670-677,共8页
The performance of lithium metal batteries(LMBs)is greatly hampered by the unstable solid electrolyte interphase(SEI)and uncontrollable growth of Li dendrites.To address this question,we developed a weak polar additiv... The performance of lithium metal batteries(LMBs)is greatly hampered by the unstable solid electrolyte interphase(SEI)and uncontrollable growth of Li dendrites.To address this question,we developed a weak polar additive strategy to develop stable and dendrite-free electrolyte for LMBs.In this paper,the effects of additives on the Li^(+)solvation kinetics and the electrode-electrolyte interphases(EEI)formation are discussed.The function of synergistically boosting the superior Li^(+)kinetics and alleviating solvent decomposition on the electrodes is confirmed.From the thermodynamic view,the exothermic process of defluorination reaction for 3,5-difluoropyridine(3,5-DFPy)results in the formation of LiF-rich SEI layer for promoting the uniform Li nucleation and deposition.From the dynamic view,the weakened Li^(+)solvation structure induced by weak polar 3,5-DFPy contributes to better Li^(+)kinetics through the easier Li^(+)desolvation.As expected,Li||Li cell with 1.0 wt%3,5-DFPy exhibits 400 cycles at 1.0 mA cm^(-2)with a deposition capacity of 0.5 mAh cm^(-2),and the Li||LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2)batteries delivers the highly reversible capacity after 200 cycles. 展开更多
关键词 Electrolytes Additive lithium dendrites Solid electrolyte interphase lithium metal batteries
在线阅读 下载PDF
Superior stability of Li_(5)Mg@Cu anodes for lithium metal batteries:Investigating the suppression effects of magnesium on lithium dendrite growth
20
作者 Ruijun Yao Zhuoyu Li +10 位作者 Longke Bao Rui Deng Kai Zheng Yiming Hu Jiahui Li Hao Zhang Shaobo Tu Rongpei Shi Junwei Wu Changming Li Xingjun Liu 《Journal of Materials Science & Technology》 2025年第8期288-302,共15页
Li metal is widely recognized as the desired anode for next-generation energy storage,Li metal batteries,due to its highest theoretical capacity and lowest potential.Nonetheless,it suffers from unstable electrochemica... Li metal is widely recognized as the desired anode for next-generation energy storage,Li metal batteries,due to its highest theoretical capacity and lowest potential.Nonetheless,it suffers from unstable electrochemical behaviors like dendrite growth and side reactions in practical application.Herein,we report a highly stable anode with collector,Li_(5)Mg@Cu,realized by the melting-rolling process.The Li_(5)Mg@Cu anode delivers ultrahigh cycle stability for 2000 and 1000 h at the current densities of 1 and 2 mA cm^(-2),respectively in symmetric cells.Meanwhile,the Li_(5)Mg@Cu|LFP cell exhibits a high-capacity retention of 91.8% for 1000 cycles and 78.8% for 2000 cycles at 1 C.Moreover,we investigate the suppression effects of Mg on the dendrite growth by studying the performance of Li_(x)Mg@Cu electrodes with different Mg contents(2.0-16.7 at%).The exchange current density,surface energy,Li^(+)diffusion coefficient,and chemical stability of Li_(x)Mg@Cu concretely reveal this improving suppression effect when Mg content becomes higher.In addition,a Mg-rich phase with“hollow brick”morphology forming in the high Mg content Li_(x)Mg@Cu guides the uniform deposition of Li.This study reveals the suppression effects of Mg on Li dendrites growth and offers a perspective for finding the optimal component of Li-Mg alloys. 展开更多
关键词 lithium dendrite lithium metal anode lithium-magnesium alloy Cycle performance Suppression effect STABILITY
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部