期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合Lite-HRNet的Yolo v5双模态自动驾驶小目标检测方法
被引量:
10
1
作者
刘子龙
沈祥飞
《汽车工程》
EI
CSCD
北大核心
2022年第10期1511-1520,1536,共11页
针对目前自动驾驶领域的目标检测算法在对道路小目标和密集目标进行检测的时候出现漏检的问题,提出一种融合Lite-HRNet的Yolo v5网络。首先为了获得高分辨率的特征检测图将Lite-HRNet作为Yolo v5的主干网络,以增强对小目标及密集目标的...
针对目前自动驾驶领域的目标检测算法在对道路小目标和密集目标进行检测的时候出现漏检的问题,提出一种融合Lite-HRNet的Yolo v5网络。首先为了获得高分辨率的特征检测图将Lite-HRNet作为Yolo v5的主干网络,以增强对小目标及密集目标的检测。为提升暗光场景下的检测性能,将红外图像与可见光图像进行动态权值融合,充分发挥可见光图像与红外图像的互补优势。由于主干网络进行了充分的特征融合,为加快检测速度取消在检测层中的特征融合结构。其次为了加快收敛速度和提高回归精度采用α-EIoU作为边界框损失函数,同时为选取针对数据集更合适的先验框,使用二分K-means算法进行聚类,并且使用小目标数据增强算法对数据集进行样本扩充。最后在flir数据集上进行对比测试,根据实验结果,提出的算法比Yolo v5在平均精度上提高了7.64%,小目标和密集目标的漏检率明显减少。
展开更多
关键词
自动驾驶
目标检测
红外图像
Yolo
v5
小目标
lite-hrnet
在线阅读
下载PDF
职称材料
题名
融合Lite-HRNet的Yolo v5双模态自动驾驶小目标检测方法
被引量:
10
1
作者
刘子龙
沈祥飞
机构
上海理工大学光电信息与计算机工程学院
出处
《汽车工程》
EI
CSCD
北大核心
2022年第10期1511-1520,1536,共11页
基金
国家自然科学基金(61603255)资助。
文摘
针对目前自动驾驶领域的目标检测算法在对道路小目标和密集目标进行检测的时候出现漏检的问题,提出一种融合Lite-HRNet的Yolo v5网络。首先为了获得高分辨率的特征检测图将Lite-HRNet作为Yolo v5的主干网络,以增强对小目标及密集目标的检测。为提升暗光场景下的检测性能,将红外图像与可见光图像进行动态权值融合,充分发挥可见光图像与红外图像的互补优势。由于主干网络进行了充分的特征融合,为加快检测速度取消在检测层中的特征融合结构。其次为了加快收敛速度和提高回归精度采用α-EIoU作为边界框损失函数,同时为选取针对数据集更合适的先验框,使用二分K-means算法进行聚类,并且使用小目标数据增强算法对数据集进行样本扩充。最后在flir数据集上进行对比测试,根据实验结果,提出的算法比Yolo v5在平均精度上提高了7.64%,小目标和密集目标的漏检率明显减少。
关键词
自动驾驶
目标检测
红外图像
Yolo
v5
小目标
lite-hrnet
Keywords
automatic driving
object detection
infrared image
Yolo v5
small target
lite-hrnet
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
U463.6 [机械工程—车辆工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合Lite-HRNet的Yolo v5双模态自动驾驶小目标检测方法
刘子龙
沈祥飞
《汽车工程》
EI
CSCD
北大核心
2022
10
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部