A liquid-assisted shear exfoliation (LASE) as a new powder metallurgy method coupled with spark plasmasintering (SPS) was applied for n-type Bi_(2)Te_(2.7)Se_(0.3) and the effects on microstructure and anisotropictran...A liquid-assisted shear exfoliation (LASE) as a new powder metallurgy method coupled with spark plasmasintering (SPS) was applied for n-type Bi_(2)Te_(2.7)Se_(0.3) and the effects on microstructure and anisotropictransport properties were investigated. Results revealed an effective reduction of average grain size dueto LASE and a high texturing in the bulks. Moreover, along the in-plane direction, electrical conductivitywas increased noticeably due to an enhanced carrier concentration, leading to a significantly improvedpower factor of 25 μW cm^(–1) K^(–2) at 303 K. Meanwhile, the total thermal conductivity was reduced effectively owing to reduction both in lattice component due to enhanced phonon scattering with the grainsize reduction, and in the bipolar component inhibited by the increased carrier concentration. Ultimately,a peak thermoelectric figure of merit (ZT) value of 0.83 was obtained at 448 K along the in-plane direction, increased by 95% compared with the pristine one. These results demonstrate the LASE process as auseful assistant method for enhancing the TE performance of layered materials.展开更多
Liquid-assisted laser ablation has the advantage of relieving thermal effects of common laser ablation processes, whereas the light scattering and shielding effects by laser-induced cavitation bubbles, suspended debri...Liquid-assisted laser ablation has the advantage of relieving thermal effects of common laser ablation processes, whereas the light scattering and shielding effects by laser-induced cavitation bubbles, suspended debris, and turbulent liquid flow generally deteriorate laser beam transmission stability, leading to low energy efficiency and poor surface quality. Here, we report that a continuous and directional high-speed microjet will form in the laser ablation zone if laser-induced primary cavitation bubbles asymmetrically collapse sequentially near the air-liquid interface under a critical thin liquid layer. The laser-induced microjet can instantaneously and directionally remove secondary bubbles and ablation debris around the laser ablation region, and thus a very stable material removal process can be obtained. The shadowgraphs of high-speed camera reveal that the average speed of laser-induced continuous microjet can be as high as 1.1 m sin its initial 500 μm displacement. The coupling effect of laser ablation, mechanical impact along with the collapse of cavitation bubbles and flushing of high-speed microjet helps achieve a high material removal rate and significantly improved surface quality. We name this uncovered liquid-assisted laser ablation process as laser-induced microjet-assisted ablation(LIMJAA) based on its unique characteristics. High-quality microgrooves with a large depth-to-width ratio of 5.2 are obtained by LIMJAA with a single-pass laser scanning process in our experiments. LIMJAA is capable of machining various types of difficult-to-process materials with high-quality arrays of micro-channels, square and circle microscale through-holes. The results and disclosed mechanisms in our work provide a deep understanding of the role of laser-induced microjet in improving the processing quality of liquid-assisted laser micromachining.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(No.51672127)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘A liquid-assisted shear exfoliation (LASE) as a new powder metallurgy method coupled with spark plasmasintering (SPS) was applied for n-type Bi_(2)Te_(2.7)Se_(0.3) and the effects on microstructure and anisotropictransport properties were investigated. Results revealed an effective reduction of average grain size dueto LASE and a high texturing in the bulks. Moreover, along the in-plane direction, electrical conductivitywas increased noticeably due to an enhanced carrier concentration, leading to a significantly improvedpower factor of 25 μW cm^(–1) K^(–2) at 303 K. Meanwhile, the total thermal conductivity was reduced effectively owing to reduction both in lattice component due to enhanced phonon scattering with the grainsize reduction, and in the bipolar component inhibited by the increased carrier concentration. Ultimately,a peak thermoelectric figure of merit (ZT) value of 0.83 was obtained at 448 K along the in-plane direction, increased by 95% compared with the pristine one. These results demonstrate the LASE process as auseful assistant method for enhancing the TE performance of layered materials.
基金financially supported by the Guangdong Provincial University Science and Technology Program(Grant No.2020KTSCX119)the Shenzhen Science and Technology Programs(Grant Nos.20200925155508001,GJHZ20190820151801786,JCYJ20210324115608024 and KQTD20170810110250357)。
文摘Liquid-assisted laser ablation has the advantage of relieving thermal effects of common laser ablation processes, whereas the light scattering and shielding effects by laser-induced cavitation bubbles, suspended debris, and turbulent liquid flow generally deteriorate laser beam transmission stability, leading to low energy efficiency and poor surface quality. Here, we report that a continuous and directional high-speed microjet will form in the laser ablation zone if laser-induced primary cavitation bubbles asymmetrically collapse sequentially near the air-liquid interface under a critical thin liquid layer. The laser-induced microjet can instantaneously and directionally remove secondary bubbles and ablation debris around the laser ablation region, and thus a very stable material removal process can be obtained. The shadowgraphs of high-speed camera reveal that the average speed of laser-induced continuous microjet can be as high as 1.1 m sin its initial 500 μm displacement. The coupling effect of laser ablation, mechanical impact along with the collapse of cavitation bubbles and flushing of high-speed microjet helps achieve a high material removal rate and significantly improved surface quality. We name this uncovered liquid-assisted laser ablation process as laser-induced microjet-assisted ablation(LIMJAA) based on its unique characteristics. High-quality microgrooves with a large depth-to-width ratio of 5.2 are obtained by LIMJAA with a single-pass laser scanning process in our experiments. LIMJAA is capable of machining various types of difficult-to-process materials with high-quality arrays of micro-channels, square and circle microscale through-holes. The results and disclosed mechanisms in our work provide a deep understanding of the role of laser-induced microjet in improving the processing quality of liquid-assisted laser micromachining.