期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhanced thermoelectric performance of n-type Bi_(2)Te_(2.7)Se_(0.3) via a simple liquid-assisted shear exfoliation 被引量:2
1
作者 Yifeng Wang Yilin Song +4 位作者 Kaikai Song Lin Pan Changchun Chen Kunihito Koumoto Qingfeng Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第22期251-258,共8页
A liquid-assisted shear exfoliation (LASE) as a new powder metallurgy method coupled with spark plasmasintering (SPS) was applied for n-type Bi_(2)Te_(2.7)Se_(0.3) and the effects on microstructure and anisotropictran... A liquid-assisted shear exfoliation (LASE) as a new powder metallurgy method coupled with spark plasmasintering (SPS) was applied for n-type Bi_(2)Te_(2.7)Se_(0.3) and the effects on microstructure and anisotropictransport properties were investigated. Results revealed an effective reduction of average grain size dueto LASE and a high texturing in the bulks. Moreover, along the in-plane direction, electrical conductivitywas increased noticeably due to an enhanced carrier concentration, leading to a significantly improvedpower factor of 25 μW cm^(–1) K^(–2) at 303 K. Meanwhile, the total thermal conductivity was reduced effectively owing to reduction both in lattice component due to enhanced phonon scattering with the grainsize reduction, and in the bipolar component inhibited by the increased carrier concentration. Ultimately,a peak thermoelectric figure of merit (ZT) value of 0.83 was obtained at 448 K along the in-plane direction, increased by 95% compared with the pristine one. These results demonstrate the LASE process as auseful assistant method for enhancing the TE performance of layered materials. 展开更多
关键词 Bi_(2)Te_(2.7)Se^(0.3) liquid-assisted shear exfoliation Textured microstructure Thermoelectric
原文传递
Laser-induced microjet-assisted ablation for high-quality microfabrication 被引量:11
2
作者 Yang Guo Pei Qiu +1 位作者 Shaolin Xu Gary J Cheng 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第3期122-130,共9页
Liquid-assisted laser ablation has the advantage of relieving thermal effects of common laser ablation processes, whereas the light scattering and shielding effects by laser-induced cavitation bubbles, suspended debri... Liquid-assisted laser ablation has the advantage of relieving thermal effects of common laser ablation processes, whereas the light scattering and shielding effects by laser-induced cavitation bubbles, suspended debris, and turbulent liquid flow generally deteriorate laser beam transmission stability, leading to low energy efficiency and poor surface quality. Here, we report that a continuous and directional high-speed microjet will form in the laser ablation zone if laser-induced primary cavitation bubbles asymmetrically collapse sequentially near the air-liquid interface under a critical thin liquid layer. The laser-induced microjet can instantaneously and directionally remove secondary bubbles and ablation debris around the laser ablation region, and thus a very stable material removal process can be obtained. The shadowgraphs of high-speed camera reveal that the average speed of laser-induced continuous microjet can be as high as 1.1 m sin its initial 500 μm displacement. The coupling effect of laser ablation, mechanical impact along with the collapse of cavitation bubbles and flushing of high-speed microjet helps achieve a high material removal rate and significantly improved surface quality. We name this uncovered liquid-assisted laser ablation process as laser-induced microjet-assisted ablation(LIMJAA) based on its unique characteristics. High-quality microgrooves with a large depth-to-width ratio of 5.2 are obtained by LIMJAA with a single-pass laser scanning process in our experiments. LIMJAA is capable of machining various types of difficult-to-process materials with high-quality arrays of micro-channels, square and circle microscale through-holes. The results and disclosed mechanisms in our work provide a deep understanding of the role of laser-induced microjet in improving the processing quality of liquid-assisted laser micromachining. 展开更多
关键词 liquid-assisted laser ablation laser-induced microjet cavitation bubbles laser microfabrication
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部