Membrane distillation(MD)has gained extensive attention for treating highly saline wastewater.However,membrane scaling during the MD process has hindered the rapid development of this technology.Current approaches to ...Membrane distillation(MD)has gained extensive attention for treating highly saline wastewater.However,membrane scaling during the MD process has hindered the rapid development of this technology.Current approaches to mitigate scaling in membrane distillation focus primarily on achieving enhanced hydrophobicity and even superhydrophobicity via utilizing fluorinated fibrous membrane or introducing perfluorosilane modification.Considering the environmental hazards posed by fluorinated compounds,it is highly desirable to develop non-fluorinated membranes with enhanced anti-scaling properties for effective membrane distillation.In this study,we present a non-fluorinated liquid-like MD membrane with exceptional anti-scaling performance.This membrane was facilely fabricated by grafting linear polydimethylsiloxane(LPDMS)onto a hydrophilic polyether sulfone(PES)membrane pre-coated with the intermediate layers of polydopamine and silica(denoted as LPDMS-PES).Remarkably,LPDMS-PES manifested a drastically improved scaling resistance in continuous MD tests than its perfluorinated counterpart,i.e.,1H,1H,2H,2H-perfluorooctyltrichlorosilane-modified PES membrane(PFOS-PES),in both heterogeneous nucleation-dominated and crystal deposition-dominated scaling processes,despite the latter having a smaller surface energy.LPDMS-PES demonstrated a reduction of crystal accumulation of approximately 85%for Na Cl and 73%for Ca SO_(4) in the heterogeneous nucleation-dominated scaling process compared to PFOS-PES.Additionally,in the crystal deposition-dominated scaling process LPDMS-PES exhibited a reduction of about 70%in scale accumulation.These results explicitly evidenced the great potential of the liquid-like membrane to minimize scaling in membrane distillation by inhibiting both scale nucleation and adhesion onto the membrane.We believe the findings of this study have important implications for the design of high-performance MD membranes,particularly in the quest for environmentally sustainable alternatives to perfluorinated materials.展开更多
Liquid-like polymer lubricating surfaces(LPLSs)are solid substrates with highly flexible polymer chains grafted via covalent bonds.This unique modification enables ultralow contact-angle hysteresis,repellency of vario...Liquid-like polymer lubricating surfaces(LPLSs)are solid substrates with highly flexible polymer chains grafted via covalent bonds.This unique modification enables ultralow contact-angle hysteresis,repellency of various liquids and bulk ice,and stability.The distinctive wettability and universality of LPLSs have potential applications in liquid motion,biological detection,and environmental protection.In this review,we summarize the mechanisms,preparation,and applications of LPLSs.We discuss the wettability and lubrication mechanisms of liquid droplets on LPLSs.We then categorize LPLS fabrication into“grafted onto”and“grafted from”groups,depending on the type of polymer.We highlight representative applications with recent developments in anti-complex liquid,anti-icing,anti-biological adhesions,biosensing,and photocatalytic activity.Finally,we discuss future challenges and outlooks for LPLSs.展开更多
The capture of circulating tumor cells(CTCs)is of great significance in reducing cancer mortality and complications.However,the nonspecific binding of proteins and white blood cells(WBCs)weakens the targeting capabili...The capture of circulating tumor cells(CTCs)is of great significance in reducing cancer mortality and complications.However,the nonspecific binding of proteins and white blood cells(WBCs)weakens the targeting capabilities of the capture surfaces,which critically hampers the efficiency and purity of the captured CTCs.Herein,we propose a liquid-like interface design strategy that consists of liquid-like polymer chains and anti-EpCAM modification processes for high-purity and high-efficiency capture of CTCs.The dynamic flexible feature of the liquid-like chains endows the modified surfaces with excellent antiadhesion property for proteins and blood cells.The liquid-like surfaces can capture the target CTCs and show high cell viability due to the environmentfriendly surface modification processes.When liquid-like surface designs were introduced in the deterministic lateral displacement(DLD)-patterned microfluidic chip,the nonspecific adhesion rate of WBCs was reduced by more than fivefold compared to that in the DLD chip without liquid-like interface design,while maintaining comparable capture efficiency.Overall,this strategy provides a novel perspective on surface design for achieving high purity and efficient capture of CTCs.展开更多
As a ubiquitous natural phenomenon,ice/frost formation on solid surfaces have adverse effects on many commercial and residential activities.Icephobic surfaces feature low ice adhesion strengths(<100 kPa)can passive...As a ubiquitous natural phenomenon,ice/frost formation on solid surfaces have adverse effects on many commercial and residential activities.Icephobic surfaces feature low ice adhesion strengths(<100 kPa)can passively retard ice formation and ease ice removal.Superhydrophobic surfaces and liquid-lubricating surfaces are two prevailing categories of icephobic surfaces.However,their long-term stability is relatively poor,and the ice adhesion strengths are not low enough for passive removal of small ice crystals(e.g.,frosts)from the surfaces.Herein,we combine the superhydrophobic and liquid-like properties in one surface to obtain durable icephobic surfaces with extremely low ice adhesion strengths(about 0.035 kPa).Ices and frosts can be removed from the surface under the action of gravity or gas purge.These surfaces are prepared based on surface nanoconical structure and covalently-grafted liquid-like perfluorinated polyether(PFPE)coating,which show synergy effects on suppressing icing and frosting by promoting expulsion of subcooled condensate droplets from the nanotexture and decreasing ice adhesion strengths.The icephobic surfaces show significantly better durability compared to lubricant-impregnated textured surfaces.Our results provide a new avenue to design passive anti-icing/anti-frosting surfaces for a wide range of applications where surfaces are exposed to humid and low-temperature environments.展开更多
Highly transparent,durable,and flexible liquid-repellent coatings are urgently needed in the realm of transparent materials,such as car windows,optical lenses,solar panels,and flexible screen materials.However,it has ...Highly transparent,durable,and flexible liquid-repellent coatings are urgently needed in the realm of transparent materials,such as car windows,optical lenses,solar panels,and flexible screen materials.However,it has been difficult to strike a balance between the robustness and flexibility of coatings constructed by a single cross-linked network design.To overcome the conundrum,this innovative approach effectively combines two distinct cross-linked networks with unique functions,thus overcoming the challenge.Through a tightly interwoven structure comprised of added crosslinking sites,the coating achieves improved liquid repellency(WCA>100°,OSA<10°),increased durability(withstands 2,000 cycles of cotton wear),enhanced flexibility(endures 5,000 cycles of bending with a bending radius of 1 mm),and maintains high transparency(over 98%in the range of 410 nm to 760 nm).Additionally,the coating with remarkable adhesion can be applied to multiple substrates,enabling large-scale preparation and easy cycling coating,thus expanding its potential applications.The architecture of this fluoride-free dual cross-linked network not only advances liquid-repellent surfaces but also provides valuable insights for the development of eco-friendly materials in the future.展开更多
This study achieves a notable enhancement in the thermoelectric performance of copper selenide compounds exhibiting liquid-like characteristics via an innovative processing method.A KCl flux-assisted high-temperature ...This study achieves a notable enhancement in the thermoelectric performance of copper selenide compounds exhibiting liquid-like characteristics via an innovative processing method.A KCl flux-assisted high-temperature melting and slow-cooling strategy was employed to fabricate nanolayered Cu_(2)Se(KCl)_(x)materials(x=0-3,denoted as S_(0)-S_(3)).Systematic characterization reveals that the coexistence ofαandβphases at room temperature creates favorable conditions for optimizing carrier transport.XPS analysis confirms the substitution of low-binding-energy Se_(2)-by high-binding-energy Cl^(-)ions within the lattice,effectively suppressing copper ion migration and remarkably improving the material's structural stability.Microstructural investigations demonstrate that all samples exhibit nanolayered stacking architectures abundant with edge dislocations.This multiscale defect architecture induces strong phonon scattering effects.Hall measurements indicate that the KCl flux-assisted processing facilitates the formation of highly ordered nanostructures,thereby enhancing carrier mobility and structural stability.Although the carrier concentration exhibits a slight decrease compared with the flux-free samples,the significant improvement in microstructural quality plays a crucial role in the synergistic optimization of electrical conductivity and the Seebeck coefficient.Notably,sample S_(2)exhibited a considerable electrical conductivity,reaching approximately 1.0×10^(5)S·m^(-1)at 300 K.More strikingly,the cooperative effect of high-density edge dislocations and dopant atoms elevates material entropy,enabling sample S_(3)to attain an ultralow lattice thermal conductivity of 0.55 W·m^(-1)·K^(-1)at 350 K.Through multi-mechanism coordination,sample S_(2)achieved a high ZT value of 1.45 at 700 K,representing a 2.7-fold improvement compared with traditional synthesis methods.This work provides new insights into performance optimization of liquid-like thermoelectric materials through defect engineering and entropy manipulation.展开更多
基金supported by National Natural Science Foundation of China(Nos.22072185,12072381)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110221)Fundamental Research Funds for the Central Universities,Sun Yatsen University(No.23yxqntd002)。
文摘Membrane distillation(MD)has gained extensive attention for treating highly saline wastewater.However,membrane scaling during the MD process has hindered the rapid development of this technology.Current approaches to mitigate scaling in membrane distillation focus primarily on achieving enhanced hydrophobicity and even superhydrophobicity via utilizing fluorinated fibrous membrane or introducing perfluorosilane modification.Considering the environmental hazards posed by fluorinated compounds,it is highly desirable to develop non-fluorinated membranes with enhanced anti-scaling properties for effective membrane distillation.In this study,we present a non-fluorinated liquid-like MD membrane with exceptional anti-scaling performance.This membrane was facilely fabricated by grafting linear polydimethylsiloxane(LPDMS)onto a hydrophilic polyether sulfone(PES)membrane pre-coated with the intermediate layers of polydopamine and silica(denoted as LPDMS-PES).Remarkably,LPDMS-PES manifested a drastically improved scaling resistance in continuous MD tests than its perfluorinated counterpart,i.e.,1H,1H,2H,2H-perfluorooctyltrichlorosilane-modified PES membrane(PFOS-PES),in both heterogeneous nucleation-dominated and crystal deposition-dominated scaling processes,despite the latter having a smaller surface energy.LPDMS-PES demonstrated a reduction of crystal accumulation of approximately 85%for Na Cl and 73%for Ca SO_(4) in the heterogeneous nucleation-dominated scaling process compared to PFOS-PES.Additionally,in the crystal deposition-dominated scaling process LPDMS-PES exhibited a reduction of about 70%in scale accumulation.These results explicitly evidenced the great potential of the liquid-like membrane to minimize scaling in membrane distillation by inhibiting both scale nucleation and adhesion onto the membrane.We believe the findings of this study have important implications for the design of high-performance MD membranes,particularly in the quest for environmentally sustainable alternatives to perfluorinated materials.
基金supported by the Fundamental Research Funds for the China Postdoctoral Science Foundation(No.2022M710611)the S&T Special Program of Huzhou(Nos.2021GZ10 and 2021GZ51)+5 种基金the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province(No.2021ZYD0046)the Chengdu Science and Technology Bureau(No.2021-GH02-00105-HZ)the Sichuan Outstanding Young Scholars Foundation(No.2021JDJQ0013)the Sichuan Science and Technology Program Foundation(Nos.2021JDRC0016 and 2023JDRC0082)the“Medical and Industrial Cross Foundation”of University of Electronic Science and Technology of China and Sichuan Provincial People’s Hospital(No.ZYGX2021YGLH207)the“Oncology Medical Engineering Innovation Foundation”project of University of Electronic Science and Technology of China and Sichuan Cancer Hospital(No.ZYGX2021YGCX009).
文摘Liquid-like polymer lubricating surfaces(LPLSs)are solid substrates with highly flexible polymer chains grafted via covalent bonds.This unique modification enables ultralow contact-angle hysteresis,repellency of various liquids and bulk ice,and stability.The distinctive wettability and universality of LPLSs have potential applications in liquid motion,biological detection,and environmental protection.In this review,we summarize the mechanisms,preparation,and applications of LPLSs.We discuss the wettability and lubrication mechanisms of liquid droplets on LPLSs.We then categorize LPLS fabrication into“grafted onto”and“grafted from”groups,depending on the type of polymer.We highlight representative applications with recent developments in anti-complex liquid,anti-icing,anti-biological adhesions,biosensing,and photocatalytic activity.Finally,we discuss future challenges and outlooks for LPLSs.
基金supported by the National Natural Science Foundation of China(grant nos.52025132,21975209,22275156,21621091,22021001,22005255,and T2241022)the National Science Foundation of Fujian Province of China(grant no.2022J02059)+4 种基金the Fundamental Research Funds for the Central Universities of China(grant nos.20720220019 and 20720220085)the 111 Project(grant nos.B17027 and B16029)the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(grant no.RD2022070601)the State Key Laboratory of Bio-Fibers and Eco-Textiles(Qingdao University)(grant no.KFKT202221)the Tencent Foundation(The XPLORER PRIZE).
文摘The capture of circulating tumor cells(CTCs)is of great significance in reducing cancer mortality and complications.However,the nonspecific binding of proteins and white blood cells(WBCs)weakens the targeting capabilities of the capture surfaces,which critically hampers the efficiency and purity of the captured CTCs.Herein,we propose a liquid-like interface design strategy that consists of liquid-like polymer chains and anti-EpCAM modification processes for high-purity and high-efficiency capture of CTCs.The dynamic flexible feature of the liquid-like chains endows the modified surfaces with excellent antiadhesion property for proteins and blood cells.The liquid-like surfaces can capture the target CTCs and show high cell viability due to the environmentfriendly surface modification processes.When liquid-like surface designs were introduced in the deterministic lateral displacement(DLD)-patterned microfluidic chip,the nonspecific adhesion rate of WBCs was reduced by more than fivefold compared to that in the DLD chip without liquid-like interface design,while maintaining comparable capture efficiency.Overall,this strategy provides a novel perspective on surface design for achieving high purity and efficient capture of CTCs.
基金We acknowledge the financial support from National Natural Science Foundation of China(Nos.22072185,12072381,21872176,and 21805315)Pearl River Talents Program(No.2017GC010671),Natural Science Foundation of Guangdong Province(No.2019A1515012030)Science and Technology Innovation Project of Guangzhou(No.202102020263).
文摘As a ubiquitous natural phenomenon,ice/frost formation on solid surfaces have adverse effects on many commercial and residential activities.Icephobic surfaces feature low ice adhesion strengths(<100 kPa)can passively retard ice formation and ease ice removal.Superhydrophobic surfaces and liquid-lubricating surfaces are two prevailing categories of icephobic surfaces.However,their long-term stability is relatively poor,and the ice adhesion strengths are not low enough for passive removal of small ice crystals(e.g.,frosts)from the surfaces.Herein,we combine the superhydrophobic and liquid-like properties in one surface to obtain durable icephobic surfaces with extremely low ice adhesion strengths(about 0.035 kPa).Ices and frosts can be removed from the surface under the action of gravity or gas purge.These surfaces are prepared based on surface nanoconical structure and covalently-grafted liquid-like perfluorinated polyether(PFPE)coating,which show synergy effects on suppressing icing and frosting by promoting expulsion of subcooled condensate droplets from the nanotexture and decreasing ice adhesion strengths.The icephobic surfaces show significantly better durability compared to lubricant-impregnated textured surfaces.Our results provide a new avenue to design passive anti-icing/anti-frosting surfaces for a wide range of applications where surfaces are exposed to humid and low-temperature environments.
基金financially supported by the National Natu-ral Science Foundation of China(Nos.22375047,22378068,and 22075046)the Natural Science Foundation of Fujian Province(No.2022J01568)+2 种基金the National Key Research and Development Program of China(Nos.2022YFB3804905 and 2022YFB3804900)China Postdoctoral Science Foundation(No.2023M743437)start-up funding from Wenzhou Institute,University of Chinese Academy of Sciences(No.WIUCASQD2019002).
文摘Highly transparent,durable,and flexible liquid-repellent coatings are urgently needed in the realm of transparent materials,such as car windows,optical lenses,solar panels,and flexible screen materials.However,it has been difficult to strike a balance between the robustness and flexibility of coatings constructed by a single cross-linked network design.To overcome the conundrum,this innovative approach effectively combines two distinct cross-linked networks with unique functions,thus overcoming the challenge.Through a tightly interwoven structure comprised of added crosslinking sites,the coating achieves improved liquid repellency(WCA>100°,OSA<10°),increased durability(withstands 2,000 cycles of cotton wear),enhanced flexibility(endures 5,000 cycles of bending with a bending radius of 1 mm),and maintains high transparency(over 98%in the range of 410 nm to 760 nm).Additionally,the coating with remarkable adhesion can be applied to multiple substrates,enabling large-scale preparation and easy cycling coating,thus expanding its potential applications.The architecture of this fluoride-free dual cross-linked network not only advances liquid-repellent surfaces but also provides valuable insights for the development of eco-friendly materials in the future.
基金Project supported by the National Natural Science Foundation of China(Grant No.62464013)。
文摘This study achieves a notable enhancement in the thermoelectric performance of copper selenide compounds exhibiting liquid-like characteristics via an innovative processing method.A KCl flux-assisted high-temperature melting and slow-cooling strategy was employed to fabricate nanolayered Cu_(2)Se(KCl)_(x)materials(x=0-3,denoted as S_(0)-S_(3)).Systematic characterization reveals that the coexistence ofαandβphases at room temperature creates favorable conditions for optimizing carrier transport.XPS analysis confirms the substitution of low-binding-energy Se_(2)-by high-binding-energy Cl^(-)ions within the lattice,effectively suppressing copper ion migration and remarkably improving the material's structural stability.Microstructural investigations demonstrate that all samples exhibit nanolayered stacking architectures abundant with edge dislocations.This multiscale defect architecture induces strong phonon scattering effects.Hall measurements indicate that the KCl flux-assisted processing facilitates the formation of highly ordered nanostructures,thereby enhancing carrier mobility and structural stability.Although the carrier concentration exhibits a slight decrease compared with the flux-free samples,the significant improvement in microstructural quality plays a crucial role in the synergistic optimization of electrical conductivity and the Seebeck coefficient.Notably,sample S_(2)exhibited a considerable electrical conductivity,reaching approximately 1.0×10^(5)S·m^(-1)at 300 K.More strikingly,the cooperative effect of high-density edge dislocations and dopant atoms elevates material entropy,enabling sample S_(3)to attain an ultralow lattice thermal conductivity of 0.55 W·m^(-1)·K^(-1)at 350 K.Through multi-mechanism coordination,sample S_(2)achieved a high ZT value of 1.45 at 700 K,representing a 2.7-fold improvement compared with traditional synthesis methods.This work provides new insights into performance optimization of liquid-like thermoelectric materials through defect engineering and entropy manipulation.