The liquid/solid(L/S)interface of dissimilar metals is critical to the microstructure,mechanical strength,and structural integrity of interconnects in many important applications such as electronics,automotive,aeronau...The liquid/solid(L/S)interface of dissimilar metals is critical to the microstructure,mechanical strength,and structural integrity of interconnects in many important applications such as electronics,automotive,aeronautics,and astronautics,and therefore has drawn increasing research interests.To design preferential microstructure and optimize mechanical properties of the interconnects,it is crucial to understand the formation and growth mechanisms of diversified structures at the L/S interface during interconnecting.In situ synchrotron radiation or tube-generated X-ray radiography and tomography technologies make it possible to observe the evolution of the L/S interface directly and therefore have greatly propelled the research in this field.Here,we review the recent progress in understanding the L/S interface behaviors using advanced in situ X-ray imaging techniques with a particular focus on the following two issues:(1)interface behaviors in the solder joints for microelectronic packaging including the intermetallic compounds(IMCs)during refl ow,Sn dendrites,and IMCs during solidification and refl ow porosities and(2)growth characteristics and morphological transition of IMCs in the interconnect of dissimilar metals at high temperature.Furthermore,the main achievements and future research perspectives in terms of metallurgical bonding mechanisms under complex conditions with improved X-ray sources and detectors are remarked and discussed.展开更多
Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrol...Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions.展开更多
As an important form of reactors for gas/liquid/solid catalytic reaction,trickle bed reactors (TBRs) are widely applied in petroleum industry,biochemical,fine chemical and pharmaceutical industries because of their fl...As an important form of reactors for gas/liquid/solid catalytic reaction,trickle bed reactors (TBRs) are widely applied in petroleum industry,biochemical,fine chemical and pharmaceutical industries because of their flexibility,simplicity of operation and high throughput.However,TBRs also show inefficient production and hot pots caused by non-uniform fluid distribution and incomplete wetting of the catalyst,which limit their further application in chemical industry.Also,process intensification in TBRs is necessary as the decrease in quality of processed crude oil,caused by increased exploitation depths,and more restrictive environmental regulations and emission standards for industry,caused by increased environment protection consciousness.In recent years,lots of strategies for process intensification in TBRs have been proposed to improve reaction performance to meet the current and future demands of chemical industry from the environmental and economic perspective.This article summarizes the recent progress in techniques for intensifying gas/liquid/solid reaction in TBRs and application of intensified TBRs in petroleum industry.展开更多
The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision.In this perspecti...The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision.In this perspective,we review the recent advances in studying the liquid/solid interfaces at atomic level by electrochemical scanning tunneling microscope(EC-STM),non-contact atomic force microscopy(NC-AFM),and surface-sensitive vibrational spectroscopies.Different from the ultrahigh vacuum and cryogenic experiments,these techniques are all operated in situ under ambient condition,making the measurements close to the native state of the liquid/solid interface.In the end,we present some perspectives on emerging techniques,which can defeat the limitation of existing imaging and spectroscopic methods in the characterization of liquid/solid interfaces.展开更多
Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are propos...Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are proposed and investigated. The HLSE has a high ionic conductivity of over 2.25 × 10^(-3) S/cm at 25?C, and an extended electrochemical window of up to 4.8 V versus Li/Li+. The Li|HLSE|Li symmetric cells and Li|HLSE|Li FePO4 cells exhibit small interfacial area specific resistances(ASRs) comparable to that of LE while much smaller than that of ceramic LAGP electrolyte, and excellent performance at room temperature. Bis(trifluoromethane sulfonimide) salt in HLSE significantly affects the properties and electrochemical behaviors. Side reactions can be effectively suppressed by lowering the concentration of Li salt. It is a feasible strategy for pursuing the high energy density batteries with higher safety.展开更多
The liquid-film solution-diffusion bonding of ZCuBe2.5 alloys was conducted using Cu-based alloy powders. The tensile strength of the joint is up to 318 MPa. With the increase of temperature gradient, the bonding time...The liquid-film solution-diffusion bonding of ZCuBe2.5 alloys was conducted using Cu-based alloy powders. The tensile strength of the joint is up to 318 MPa. With the increase of temperature gradient, the bonding time decreases and the interface migration velocity increases remarkably. The appropriate temperature gradient is 5-40 K/cm. Under fixed bonding time, the thickness of diffusion layer increases with the increase of temperature gradient, and this tendency becomes more remarkable with the prolonging of bonding time.展开更多
We study the effects of gas adsorption on the dynamics and stability of nanobubbles at the solid–liquid interface. The phase diagram and dynamic evolution of surface nanobubbles were analyzed under varying equilibriu...We study the effects of gas adsorption on the dynamics and stability of nanobubbles at the solid–liquid interface. The phase diagram and dynamic evolution of surface nanobubbles were analyzed under varying equilibrium adsorption constant.Four distinct dynamic behaviors appear in the phase diagram: shrinking to dissolution, expanding to bursting, shrinking to stability, and expanding to stability. Special boundary states are identified in phase diagram, where the continuous growth of nanobubbles can take place even under very weak gas–surface interaction or with very small initial bubble size. Surface adsorption plays a critical role in the stability, lifetime, radius, and contact angle of nanobubbles, thereby demonstrating that pinning is not a prerequisite for stabilization. Furthermore, stable equilibrium nanobubbles exhibit a characteristic range of footprint radius, a limited height, and a small contact angle, consistent with experimental observations.展开更多
Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials ...Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability.展开更多
The non-aqueous solid-liquid biphasic solvent of 2-amino-2-methyl-1-propanol(AMP)/piperazine(PZ)/dipropylene glycol dimethyl ether(DME)features a high CO_(2)absorption loading,favorable phase separation behavior and h...The non-aqueous solid-liquid biphasic solvent of 2-amino-2-methyl-1-propanol(AMP)/piperazine(PZ)/dipropylene glycol dimethyl ether(DME)features a high CO_(2)absorption loading,favorable phase separation behavior and high regeneration efficiency.Different with the liquid-liquid phase change solvent,the reaction kinetics of CO_(2)capture into solid-liquid biphasic solvent was rarely studied.In the present work,the reaction kinetics of CO_(2)absorption into AMP/PZ/DME solid-liquid biphasic solvent was investigated into the double stirred kettle reactor.The absorption reaction followed a pseudo-first-order kinetic model according to the zwitterion mechanism.The overall reaction rate constant(kov)and the enhancement factor(E)of CO_(2)absorption both increased with increasing temperature.The total mass transfer resistance of the absorbent decreased with increasing temperature and increased with increasing absorption loading,so the higher reaction temperature was conducive to the absorption,and the liquid phase mass transfer resistance was the main factor affecting the absorption rate.展开更多
The enrichment of low-grade phosphate rock is an important process to realize sustainable support of phosphorus resources. An aqueous solution containing Ca(NO_(3))_(2) and Mg(NO_(3))_(2) is produced during the enrich...The enrichment of low-grade phosphate rock is an important process to realize sustainable support of phosphorus resources. An aqueous solution containing Ca(NO_(3))_(2) and Mg(NO_(3))_(2) is produced during the enrichment of low-grade phosphate rock by leaching of HNO_(3) or calcination coupling with leaching of NH_(4)NO_(3) solution. Preparation liquid fertilizer is a preferential way to utilize it. The liquid−solid phase diagrams of Ca(NO_(3))_(2)-Mg(NO_(3))_(2)-H_(2)O, KNO_(3)-Mg(NO_(3))_(2)-H_(2)O, KNO_(3)-Ca(NO_(3))_(2)-H_(2)O and KNO_(3)-Ca(NO_(3))_(2)-Mg(NO_(3))_(2)-H_(2)O systems at 313.15 K were studied by isothermal dissolution equilibrium method. Two crystallization regions of Ca(NO_(3))_(2)·4H_(2)O and Mg(NO_(3))_(2)·6H_(2)O were observed in the phase diagram of the ternary system Ca(NO_(3))_(2)-Mg(NO_(3))_(2)-H_(2)O, a liquid fertilizer with a maximal total nutrient content of 27.46% and a nutrients ratio of N:Ca:Mg = 8.40:10.37:1 can be formed. A homogenous solution can be formed by mixing Ca(NO_(3))_(2)·4H_(2)O and Mg(NO_(3))_(2)·6H_(2)O. In the ternary system KNO_(3)-Mg(NO_(3))_(2)-H_(2)O, the crystallization regions of KNO_(3), Mg(NO_(3))_(2)·6H_(2)O and the co-crystallization region of KNO_(3) and Mg(NO_(3))_(2)·6H_(2)O were observed. The obtained maximal total nutrient content of liquid fertilizer is 23.32% with the ratio of N:K_(2)O = 1:3.39. In the ternary system KNO_(3)-Ca(NO_(3))_(2)-H_(2)O, the crystallization regions of Ca(NO_(3))_(2)·4H_(2)O and KNO_(3) were observed. The obtained maximal total nutrient content of liquid fertilizer is 38.41% with the ratio of N:K_(2)O:Ca = 1.05:1.18:1. A homogenous solution can also be formed by mixing Ca(NO_(3))_(2)·4H_(2)O and KNO_(3) directly. In the quaternary system KNO_(3)-Ca(NO_(3))_(2)-Mg(NO_(3))_(2)-H_(2)O, the crystallization regions of Ca(NO_(3))_(2)·4H_(2)O, Mg(NO_(3))_(2)·6H_(2)O and KNO_(3) and the co-crystallization region of KNO_(3) and Mg(NO_(3))_(2)·6H_(2)O were observed. The obtained maximal total nutrient content of liquid fertilizer is 38.41% with the ratio of N:K_(2)O:Ca = 1.05:1.18:1. The modified BET model was successfully used to fit the solubility curves. The results can provide a guidance for the formulation of water-soluble fertilizers of N-(K, Ca, Mg).展开更多
The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical...The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction.展开更多
Lithium metal batteries with inorganic solid-state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high-energy content and safety.Nonetheless,i...Lithium metal batteries with inorganic solid-state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high-energy content and safety.Nonetheless,inherent challenges of deleterious lithium dendrite growth and poor interfacial stability hinder their commercial application.Herein,we report a liquid metal-coated lithium metal(LM@Li)anode strategy to improve the contact between lithium metal and a Li6PS5Cl inorganic electrolyte.The LM@Li symmetric cell shows over 1000 h of stable lithium plating/stripping cycles at 2mA cm^(-2) and a significantly higher critical current density of 9.8 mAcm^(-2) at 25°C.In addition,a full battery assembled with a high-capacity composite LiNbO3@-LiNi_(0.7)Co_(0.2)Mn_(0.1)O_(2)(LNO@NCM721)cathode shows stable cycling performance.Experimental and computational results have demonstrated that dendrite growth tolerance and physical contact in solid-state batteries can be reinforced by using LM interlayers for interfacial modification.展开更多
The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal ba...The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal batteries(LMBs),with their ultralow reduction potential and high theoretical capacity,are widely regarded as the most promising technical pathway for achieving high energy density batteries.In this review,we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs.Furthermore,we propose improved strategies involving interface engineering,3D current collector design,electrolyte optimization,separator modification,application of alloyed anodes,and external field regulation to address these challenges.The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them.This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes.Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface,leading to increased interface inhomogeneity—a critical factor contributing to failure in all-solidstate lithium metal batteries.Based on recent research works,this perspective highlights the current status of research on developing high-performance LMBs.展开更多
The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective ...The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.展开更多
The structural transformation from a liquid into a crystalline solid is an important subject in condensed matter physics and materials science. In the present study, first-principles molecular dynamics calculations ar...The structural transformation from a liquid into a crystalline solid is an important subject in condensed matter physics and materials science. In the present study, first-principles molecular dynamics calculations are performed to investigate the structure and properties of aluminum during the solidification which is induced by cooling and compression. In the cooling process and compression process, it is found that the icosahedral short-range order is initially enhanced and then begin to decay, the face-centered cubic short-range order eventually becomes dominant before it transforms into a crystalline solid.展开更多
In order to obtain the crystalline forms of the salts of the potassium,ammonium,calcium coexisting chloride system,the phase equilibria relationship of quaternary system K^(+),NH_(4)^(+),Ca^(2+)//Cl^(-)-H_(2)O at 298....In order to obtain the crystalline forms of the salts of the potassium,ammonium,calcium coexisting chloride system,the phase equilibria relationship of quaternary system K^(+),NH_(4)^(+),Ca^(2+)//Cl^(-)-H_(2)O at 298.2,323.2,and 348.2 K was studied by isothermal dissolution equilibrium method.The solubility and density of equilibrium liquid phases of the system were experimentally determined;X-ray powder diffractometer was used to determine the compositions of the equilibrium solid phase at the quaternary invariant point.It is found that the quaternary system is a complex system at these three temperatures.The phase diagram at 298.2 K consists of three invariant points,seven univariate curves and five crystalline phase regions,forming the solid solutions(NH_(4)Cl)_(x)(KCl)_(1-x) and(KCl)_(x)(NH_(4)Cl)_(1-x);while at 323.2 and 348.2 K the phase diagram consists of five invariant points,eleven univariate curves and seven crystalline phase regions,the double salts(KClCaCl_(2))and(2NH_(4)Cl·CaCl_(2)·3H_(2)O),solid solutions(KCl)_(x)(NH_(4)Cl)_(1-x) and(NH_(4)Cl)_(x)(KCl)_(1-x) were formed.Among them,the crystalline phase region of solid solution(KCl)_(x)(NH_(4)Cl)_(1-x) is the largest at three temperatures,indicating that it is the easiest to crystallize in this system.Comparing the phase diagrams of the quaternary system at 298.2,323.2,and 348.2 K,it can be seen that the crystalline form of CaCl_(2) changes with the increase of temperature:CaCl_(2)·6H_(2)O at 298.2 K,CaCl_(2)·2H_(2)O at 323.2 and 348.2 K.From 323.2 to 348.2 K,the crystalline phase regions of(KCl·CaCl_(2))and(2NH_(4)Cl·CaCl_(2)·3H_(2)O)increased gradually.展开更多
Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SO...Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.展开更多
基金supported by the National Key Research and Development Program(Nos.2017YFA0403800 and 2017YFB0305301)the National Natural Science Foundation of ChinaExcellent Young Scholars(No.51922068)+1 种基金the National Natural Science Foundation of China(Nos.51727802,51821001 and 51904187)funded by China Postdoctoral Science Foundation(No.2019M661500)。
文摘The liquid/solid(L/S)interface of dissimilar metals is critical to the microstructure,mechanical strength,and structural integrity of interconnects in many important applications such as electronics,automotive,aeronautics,and astronautics,and therefore has drawn increasing research interests.To design preferential microstructure and optimize mechanical properties of the interconnects,it is crucial to understand the formation and growth mechanisms of diversified structures at the L/S interface during interconnecting.In situ synchrotron radiation or tube-generated X-ray radiography and tomography technologies make it possible to observe the evolution of the L/S interface directly and therefore have greatly propelled the research in this field.Here,we review the recent progress in understanding the L/S interface behaviors using advanced in situ X-ray imaging techniques with a particular focus on the following two issues:(1)interface behaviors in the solder joints for microelectronic packaging including the intermetallic compounds(IMCs)during refl ow,Sn dendrites,and IMCs during solidification and refl ow porosities and(2)growth characteristics and morphological transition of IMCs in the interconnect of dissimilar metals at high temperature.Furthermore,the main achievements and future research perspectives in terms of metallurgical bonding mechanisms under complex conditions with improved X-ray sources and detectors are remarked and discussed.
文摘Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions.
基金the support of National Natural Science Foundation of China(21878019)Beijing Natural Science Foundation(2182063)。
文摘As an important form of reactors for gas/liquid/solid catalytic reaction,trickle bed reactors (TBRs) are widely applied in petroleum industry,biochemical,fine chemical and pharmaceutical industries because of their flexibility,simplicity of operation and high throughput.However,TBRs also show inefficient production and hot pots caused by non-uniform fluid distribution and incomplete wetting of the catalyst,which limit their further application in chemical industry.Also,process intensification in TBRs is necessary as the decrease in quality of processed crude oil,caused by increased exploitation depths,and more restrictive environmental regulations and emission standards for industry,caused by increased environment protection consciousness.In recent years,lots of strategies for process intensification in TBRs have been proposed to improve reaction performance to meet the current and future demands of chemical industry from the environmental and economic perspective.This article summarizes the recent progress in techniques for intensifying gas/liquid/solid reaction in TBRs and application of intensified TBRs in petroleum industry.
文摘The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision.In this perspective,we review the recent advances in studying the liquid/solid interfaces at atomic level by electrochemical scanning tunneling microscope(EC-STM),non-contact atomic force microscopy(NC-AFM),and surface-sensitive vibrational spectroscopies.Different from the ultrahigh vacuum and cryogenic experiments,these techniques are all operated in situ under ambient condition,making the measurements close to the native state of the liquid/solid interface.In the end,we present some perspectives on emerging techniques,which can defeat the limitation of existing imaging and spectroscopic methods in the characterization of liquid/solid interfaces.
基金supported by the National Key Basic Research Program of China(Grant No.2014CB932400)the National Natural Science Foundation of China(Grant No.51772167)+1 种基金the China Postdoctoral Science Foundation(Grant No.2016M591169)the Shenzhen Municipal Basic Research Project,China(Grant No.JCYJ20170412171311288)
文摘Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are proposed and investigated. The HLSE has a high ionic conductivity of over 2.25 × 10^(-3) S/cm at 25?C, and an extended electrochemical window of up to 4.8 V versus Li/Li+. The Li|HLSE|Li symmetric cells and Li|HLSE|Li FePO4 cells exhibit small interfacial area specific resistances(ASRs) comparable to that of LE while much smaller than that of ceramic LAGP electrolyte, and excellent performance at room temperature. Bis(trifluoromethane sulfonimide) salt in HLSE significantly affects the properties and electrochemical behaviors. Side reactions can be effectively suppressed by lowering the concentration of Li salt. It is a feasible strategy for pursuing the high energy density batteries with higher safety.
文摘The liquid-film solution-diffusion bonding of ZCuBe2.5 alloys was conducted using Cu-based alloy powders. The tensile strength of the joint is up to 318 MPa. With the increase of temperature gradient, the bonding time decreases and the interface migration velocity increases remarkably. The appropriate temperature gradient is 5-40 K/cm. Under fixed bonding time, the thickness of diffusion layer increases with the increase of temperature gradient, and this tendency becomes more remarkable with the prolonging of bonding time.
基金Project supported by the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2022GXNSFAA035487)the National Natural Science Foundation of China (Grant Nos. 12272100, 11474285, and 12074382)+2 种基金the Graduate Education Innovation Project of Guangxi Zhuang Autonomous Region, China (Grant No. XJCY2022012)the Guangxi Normal University Ideological and Political Demonstration Course Construction Project (Grant Nos. 2022kcsz15 and 2023kcsz29)the Innovation Project of Graduate Education of Guangxi Zhuang Autonomous Region, China (Grant No. YCBZ2024087)。
文摘We study the effects of gas adsorption on the dynamics and stability of nanobubbles at the solid–liquid interface. The phase diagram and dynamic evolution of surface nanobubbles were analyzed under varying equilibrium adsorption constant.Four distinct dynamic behaviors appear in the phase diagram: shrinking to dissolution, expanding to bursting, shrinking to stability, and expanding to stability. Special boundary states are identified in phase diagram, where the continuous growth of nanobubbles can take place even under very weak gas–surface interaction or with very small initial bubble size. Surface adsorption plays a critical role in the stability, lifetime, radius, and contact angle of nanobubbles, thereby demonstrating that pinning is not a prerequisite for stabilization. Furthermore, stable equilibrium nanobubbles exhibit a characteristic range of footprint radius, a limited height, and a small contact angle, consistent with experimental observations.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFE0207300)National Natural Science Foundation of China(Grant Nos.22179142 and 22075314)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2024ZB051 and 2023ZB836)the technical support for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(SINANO).
文摘Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability.
基金supported by the National Natural Science Foundation of China(No.22276064)the Youth Innovation Grant of Xiamen,Fujian Province(No.3502Z20206006)+1 种基金the MOE Key Laboratory of Resources and Environmental System Optimization(No.KLRE-KF202205)Fujian Science and Technology Project(No.2022Y3007).
文摘The non-aqueous solid-liquid biphasic solvent of 2-amino-2-methyl-1-propanol(AMP)/piperazine(PZ)/dipropylene glycol dimethyl ether(DME)features a high CO_(2)absorption loading,favorable phase separation behavior and high regeneration efficiency.Different with the liquid-liquid phase change solvent,the reaction kinetics of CO_(2)capture into solid-liquid biphasic solvent was rarely studied.In the present work,the reaction kinetics of CO_(2)absorption into AMP/PZ/DME solid-liquid biphasic solvent was investigated into the double stirred kettle reactor.The absorption reaction followed a pseudo-first-order kinetic model according to the zwitterion mechanism.The overall reaction rate constant(kov)and the enhancement factor(E)of CO_(2)absorption both increased with increasing temperature.The total mass transfer resistance of the absorbent decreased with increasing temperature and increased with increasing absorption loading,so the higher reaction temperature was conducive to the absorption,and the liquid phase mass transfer resistance was the main factor affecting the absorption rate.
基金support from the National Key Research and Development Program of China(2022YFC2904704)the Fundamental Research Funds for the Central Universities(SCU2024D009)。
文摘The enrichment of low-grade phosphate rock is an important process to realize sustainable support of phosphorus resources. An aqueous solution containing Ca(NO_(3))_(2) and Mg(NO_(3))_(2) is produced during the enrichment of low-grade phosphate rock by leaching of HNO_(3) or calcination coupling with leaching of NH_(4)NO_(3) solution. Preparation liquid fertilizer is a preferential way to utilize it. The liquid−solid phase diagrams of Ca(NO_(3))_(2)-Mg(NO_(3))_(2)-H_(2)O, KNO_(3)-Mg(NO_(3))_(2)-H_(2)O, KNO_(3)-Ca(NO_(3))_(2)-H_(2)O and KNO_(3)-Ca(NO_(3))_(2)-Mg(NO_(3))_(2)-H_(2)O systems at 313.15 K were studied by isothermal dissolution equilibrium method. Two crystallization regions of Ca(NO_(3))_(2)·4H_(2)O and Mg(NO_(3))_(2)·6H_(2)O were observed in the phase diagram of the ternary system Ca(NO_(3))_(2)-Mg(NO_(3))_(2)-H_(2)O, a liquid fertilizer with a maximal total nutrient content of 27.46% and a nutrients ratio of N:Ca:Mg = 8.40:10.37:1 can be formed. A homogenous solution can be formed by mixing Ca(NO_(3))_(2)·4H_(2)O and Mg(NO_(3))_(2)·6H_(2)O. In the ternary system KNO_(3)-Mg(NO_(3))_(2)-H_(2)O, the crystallization regions of KNO_(3), Mg(NO_(3))_(2)·6H_(2)O and the co-crystallization region of KNO_(3) and Mg(NO_(3))_(2)·6H_(2)O were observed. The obtained maximal total nutrient content of liquid fertilizer is 23.32% with the ratio of N:K_(2)O = 1:3.39. In the ternary system KNO_(3)-Ca(NO_(3))_(2)-H_(2)O, the crystallization regions of Ca(NO_(3))_(2)·4H_(2)O and KNO_(3) were observed. The obtained maximal total nutrient content of liquid fertilizer is 38.41% with the ratio of N:K_(2)O:Ca = 1.05:1.18:1. A homogenous solution can also be formed by mixing Ca(NO_(3))_(2)·4H_(2)O and KNO_(3) directly. In the quaternary system KNO_(3)-Ca(NO_(3))_(2)-Mg(NO_(3))_(2)-H_(2)O, the crystallization regions of Ca(NO_(3))_(2)·4H_(2)O, Mg(NO_(3))_(2)·6H_(2)O and KNO_(3) and the co-crystallization region of KNO_(3) and Mg(NO_(3))_(2)·6H_(2)O were observed. The obtained maximal total nutrient content of liquid fertilizer is 38.41% with the ratio of N:K_(2)O:Ca = 1.05:1.18:1. The modified BET model was successfully used to fit the solubility curves. The results can provide a guidance for the formulation of water-soluble fertilizers of N-(K, Ca, Mg).
基金supported by the National Science Foundation of China(Grant No.42177172)China Geological Survey Project(Grant No.DD20230538).
文摘The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction.
基金financially supported by the Shenzhen Science and Technology Program (Grant No.KQTD20200820113045083,ZDSYS20190902093220279,and JCYJ20220818102403007)the National Natural Science Foundation of China (52201257)the Shenzhen Research Fund for Returned Scholars (DD11409017).
文摘Lithium metal batteries with inorganic solid-state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high-energy content and safety.Nonetheless,inherent challenges of deleterious lithium dendrite growth and poor interfacial stability hinder their commercial application.Herein,we report a liquid metal-coated lithium metal(LM@Li)anode strategy to improve the contact between lithium metal and a Li6PS5Cl inorganic electrolyte.The LM@Li symmetric cell shows over 1000 h of stable lithium plating/stripping cycles at 2mA cm^(-2) and a significantly higher critical current density of 9.8 mAcm^(-2) at 25°C.In addition,a full battery assembled with a high-capacity composite LiNbO3@-LiNi_(0.7)Co_(0.2)Mn_(0.1)O_(2)(LNO@NCM721)cathode shows stable cycling performance.Experimental and computational results have demonstrated that dendrite growth tolerance and physical contact in solid-state batteries can be reinforced by using LM interlayers for interfacial modification.
基金This work is supported by the Technologies R&D Program of Huzhou City(No.2022JB01)the Key Research and Development Program of Zhejiang Province(No.2023C01127)the Highstar Corporation HSD20210118.
文摘The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal batteries(LMBs),with their ultralow reduction potential and high theoretical capacity,are widely regarded as the most promising technical pathway for achieving high energy density batteries.In this review,we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs.Furthermore,we propose improved strategies involving interface engineering,3D current collector design,electrolyte optimization,separator modification,application of alloyed anodes,and external field regulation to address these challenges.The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them.This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes.Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface,leading to increased interface inhomogeneity—a critical factor contributing to failure in all-solidstate lithium metal batteries.Based on recent research works,this perspective highlights the current status of research on developing high-performance LMBs.
基金supported by National Natural Science Foundation of China(Grant No.52270106 and 22266021)Yunnan Major Scientific and Technological Projects(grant No.202202AG050005)Yunnan Fundamental Research Projects(grant No.202201AT070116).
文摘The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.
基金Project supported by the National Natural Science Foundation of China(Grant No.51701180)the Foundation of the State Key Laboratory of Coal Conversion,China(Grant No.J22-23-103)。
文摘The structural transformation from a liquid into a crystalline solid is an important subject in condensed matter physics and materials science. In the present study, first-principles molecular dynamics calculations are performed to investigate the structure and properties of aluminum during the solidification which is induced by cooling and compression. In the cooling process and compression process, it is found that the icosahedral short-range order is initially enhanced and then begin to decay, the face-centered cubic short-range order eventually becomes dominant before it transforms into a crystalline solid.
基金Supported by the National Key Research and Development Program of China(2023YFC2906503)Sichuan Province Science and Technology Support Program(2023ZYD0036).
文摘In order to obtain the crystalline forms of the salts of the potassium,ammonium,calcium coexisting chloride system,the phase equilibria relationship of quaternary system K^(+),NH_(4)^(+),Ca^(2+)//Cl^(-)-H_(2)O at 298.2,323.2,and 348.2 K was studied by isothermal dissolution equilibrium method.The solubility and density of equilibrium liquid phases of the system were experimentally determined;X-ray powder diffractometer was used to determine the compositions of the equilibrium solid phase at the quaternary invariant point.It is found that the quaternary system is a complex system at these three temperatures.The phase diagram at 298.2 K consists of three invariant points,seven univariate curves and five crystalline phase regions,forming the solid solutions(NH_(4)Cl)_(x)(KCl)_(1-x) and(KCl)_(x)(NH_(4)Cl)_(1-x);while at 323.2 and 348.2 K the phase diagram consists of five invariant points,eleven univariate curves and seven crystalline phase regions,the double salts(KClCaCl_(2))and(2NH_(4)Cl·CaCl_(2)·3H_(2)O),solid solutions(KCl)_(x)(NH_(4)Cl)_(1-x) and(NH_(4)Cl)_(x)(KCl)_(1-x) were formed.Among them,the crystalline phase region of solid solution(KCl)_(x)(NH_(4)Cl)_(1-x) is the largest at three temperatures,indicating that it is the easiest to crystallize in this system.Comparing the phase diagrams of the quaternary system at 298.2,323.2,and 348.2 K,it can be seen that the crystalline form of CaCl_(2) changes with the increase of temperature:CaCl_(2)·6H_(2)O at 298.2 K,CaCl_(2)·2H_(2)O at 323.2 and 348.2 K.From 323.2 to 348.2 K,the crystalline phase regions of(KCl·CaCl_(2))and(2NH_(4)Cl·CaCl_(2)·3H_(2)O)increased gradually.
基金financial support from the JSPS KAKENHI Grant-in-Aid for Scientific Research(B),No.21H02035KAKENHI Grant-in-Aid for Challenging Research(Exploratory),No.21K19017+2 种基金KAKENHI Grant-in-Aid for Transformative Research Areas(B),No.21H05100National Natural Science Foundation of China,No.22409033 and No.22409035Basic and Applied Basic Research Foundation of Guangdong Province,No.2022A1515110470.
文摘Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.