期刊文献+
共找到222,016篇文章
< 1 2 250 >
每页显示 20 50 100
Recent Progress in Metallurgical Bonding Mechanisms at the Liquid/Solid Interface of Dissimilar Metals Investigated via in situ X-ray Imaging Technologies 被引量:6
1
作者 Zongye Ding Naifang Zhang +3 位作者 Liao Yu Wenquan Lu Jianguo Li Qiaodan Hu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第2期145-168,共24页
The liquid/solid(L/S)interface of dissimilar metals is critical to the microstructure,mechanical strength,and structural integrity of interconnects in many important applications such as electronics,automotive,aeronau... The liquid/solid(L/S)interface of dissimilar metals is critical to the microstructure,mechanical strength,and structural integrity of interconnects in many important applications such as electronics,automotive,aeronautics,and astronautics,and therefore has drawn increasing research interests.To design preferential microstructure and optimize mechanical properties of the interconnects,it is crucial to understand the formation and growth mechanisms of diversified structures at the L/S interface during interconnecting.In situ synchrotron radiation or tube-generated X-ray radiography and tomography technologies make it possible to observe the evolution of the L/S interface directly and therefore have greatly propelled the research in this field.Here,we review the recent progress in understanding the L/S interface behaviors using advanced in situ X-ray imaging techniques with a particular focus on the following two issues:(1)interface behaviors in the solder joints for microelectronic packaging including the intermetallic compounds(IMCs)during refl ow,Sn dendrites,and IMCs during solidification and refl ow porosities and(2)growth characteristics and morphological transition of IMCs in the interconnect of dissimilar metals at high temperature.Furthermore,the main achievements and future research perspectives in terms of metallurgical bonding mechanisms under complex conditions with improved X-ray sources and detectors are remarked and discussed. 展开更多
关键词 liquid/solid interface Metallurgical bonding Dissimilar interconnects In situ X-ray imaging solidIFICATION Microelectronic packaging
原文传递
Understanding fundamentals of electrochemical reactions with tender X-rays:A new lab-based operando X-ray photoelectron spectroscopy method for probing liquid/solid and gas/solid interfaces across a variety of electrochemical systems 被引量:1
2
作者 Chiyan Liu Qiao Dong +5 位作者 Yong Han Yijing Zang Hui Zhang Xiaoming Xie Yi Yu Zhi Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第11期2858-2870,共13页
Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrol... Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions. 展开更多
关键词 Tender X-rays Ambient pressure X-ray photoelectron spectroscopy ELECTROCATALYSIS liquid/solid interface Gas/solid interface
在线阅读 下载PDF
Process intensification in gas/liquid/solid reaction in trickle bed reactors: A review 被引量:1
3
作者 Jing Tan Ya-Ni Ji +1 位作者 Wen-Sheng Deng Yue-Feng Su 《Petroleum Science》 SCIE CAS CSCD 2021年第4期1203-1218,共16页
As an important form of reactors for gas/liquid/solid catalytic reaction,trickle bed reactors (TBRs) are widely applied in petroleum industry,biochemical,fine chemical and pharmaceutical industries because of their fl... As an important form of reactors for gas/liquid/solid catalytic reaction,trickle bed reactors (TBRs) are widely applied in petroleum industry,biochemical,fine chemical and pharmaceutical industries because of their flexibility,simplicity of operation and high throughput.However,TBRs also show inefficient production and hot pots caused by non-uniform fluid distribution and incomplete wetting of the catalyst,which limit their further application in chemical industry.Also,process intensification in TBRs is necessary as the decrease in quality of processed crude oil,caused by increased exploitation depths,and more restrictive environmental regulations and emission standards for industry,caused by increased environment protection consciousness.In recent years,lots of strategies for process intensification in TBRs have been proposed to improve reaction performance to meet the current and future demands of chemical industry from the environmental and economic perspective.This article summarizes the recent progress in techniques for intensifying gas/liquid/solid reaction in TBRs and application of intensified TBRs in petroleum industry. 展开更多
关键词 Trickle bed reactor Process intensification Gas/liquid/solid catalytic reaction Petroleum industry
原文传递
Atomic-level characterization of liquid/solid interface 被引量:1
4
作者 Jiani Hong Ying Jiang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第11期25-36,共12页
The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision.In this perspecti... The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision.In this perspective,we review the recent advances in studying the liquid/solid interfaces at atomic level by electrochemical scanning tunneling microscope(EC-STM),non-contact atomic force microscopy(NC-AFM),and surface-sensitive vibrational spectroscopies.Different from the ultrahigh vacuum and cryogenic experiments,these techniques are all operated in situ under ambient condition,making the measurements close to the native state of the liquid/solid interface.In the end,we present some perspectives on emerging techniques,which can defeat the limitation of existing imaging and spectroscopic methods in the characterization of liquid/solid interfaces. 展开更多
关键词 liquid/solid interface atomic scale scanning tunneling microscope(STM) atomic force microscopy(AFM)
原文传递
Tuning hybrid liquid/solid electrolytes by lowering Li salt concentration for lithium batteries
5
作者 Wei Yang Qi-Di Wang +8 位作者 Yu Lei Zi-Pei Wan Lei Qin Wei Yu Ru-Liang Liu Deng-Yun Zhai Hong Li Bao-Hua Li Fei-Yu Kang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第6期488-495,共8页
Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are propos... Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are proposed and investigated. The HLSE has a high ionic conductivity of over 2.25 × 10^(-3) S/cm at 25?C, and an extended electrochemical window of up to 4.8 V versus Li/Li+. The Li|HLSE|Li symmetric cells and Li|HLSE|Li FePO4 cells exhibit small interfacial area specific resistances(ASRs) comparable to that of LE while much smaller than that of ceramic LAGP electrolyte, and excellent performance at room temperature. Bis(trifluoromethane sulfonimide) salt in HLSE significantly affects the properties and electrochemical behaviors. Side reactions can be effectively suppressed by lowering the concentration of Li salt. It is a feasible strategy for pursuing the high energy density batteries with higher safety. 展开更多
关键词 lithium battery hybrid liquid/solid electrolyte interfacial resistance salt concentration
原文传递
Role of temperature gradient in liquid/solid phase solution-diffusion bonding
6
作者 翟秋亚 徐锦锋 《China Welding》 EI CAS 2004年第2期86-90,共5页
The liquid-film solution-diffusion bonding of ZCuBe2.5 alloys was conducted using Cu-based alloy powders. The tensile strength of the joint is up to 318 MPa. With the increase of temperature gradient, the bonding time... The liquid-film solution-diffusion bonding of ZCuBe2.5 alloys was conducted using Cu-based alloy powders. The tensile strength of the joint is up to 318 MPa. With the increase of temperature gradient, the bonding time decreases and the interface migration velocity increases remarkably. The appropriate temperature gradient is 5-40 K/cm. Under fixed bonding time, the thickness of diffusion layer increases with the increase of temperature gradient, and this tendency becomes more remarkable with the prolonging of bonding time. 展开更多
关键词 solution-diffusion welding temperature gradient liquid/solid interface bonding time
在线阅读 下载PDF
Adsorption-modulated dynamical stability of nanobubbles at the solid–liquid interface
7
作者 Guiyuan Huang Lili Lan +2 位作者 Binghai Wen Li Yang Yong Yang 《Chinese Physics B》 2025年第6期401-408,共8页
We study the effects of gas adsorption on the dynamics and stability of nanobubbles at the solid–liquid interface. The phase diagram and dynamic evolution of surface nanobubbles were analyzed under varying equilibriu... We study the effects of gas adsorption on the dynamics and stability of nanobubbles at the solid–liquid interface. The phase diagram and dynamic evolution of surface nanobubbles were analyzed under varying equilibrium adsorption constant.Four distinct dynamic behaviors appear in the phase diagram: shrinking to dissolution, expanding to bursting, shrinking to stability, and expanding to stability. Special boundary states are identified in phase diagram, where the continuous growth of nanobubbles can take place even under very weak gas–surface interaction or with very small initial bubble size. Surface adsorption plays a critical role in the stability, lifetime, radius, and contact angle of nanobubbles, thereby demonstrating that pinning is not a prerequisite for stabilization. Furthermore, stable equilibrium nanobubbles exhibit a characteristic range of footprint radius, a limited height, and a small contact angle, consistent with experimental observations. 展开更多
关键词 NANOBUBBLES solidliquid interface phase diagram gas adsorption
原文传递
Polymerized-ionic-liquid-based solid polymer electrolyte for ultra-stable lithium metal batteries enabled by structural design of monomer and crosslinked 3D network
8
作者 Lingwang Liu Jiangyan Xue +14 位作者 Yiwen Gao Shiqi Zhang Haiyang Zhang Keyang Peng Xin Zhang Suwan Lu Shixiao Weng Haifeng Tu Yang Liu Zhicheng Wang Fengrui Zhang Daosong Fu Jingjing Xu Qun Luo Xiaodong Wu 《Materials Reports(Energy)》 2025年第1期61-69,共9页
Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials ... Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability. 展开更多
关键词 Polymerized ionic liquid solid polymer electrolyte Structural design Crosslinked 3D network Lithium metal battery
在线阅读 下载PDF
Reaction kinetics of CO_(2)capture into AMP/PZ/DME solid-liquid biphasic solvent
9
作者 Xiaoyun Chen Guohua Jing +1 位作者 Bihong Lv Zuoming Zhou 《Journal of Environmental Sciences》 2025年第4期622-631,共10页
The non-aqueous solid-liquid biphasic solvent of 2-amino-2-methyl-1-propanol(AMP)/piperazine(PZ)/dipropylene glycol dimethyl ether(DME)features a high CO_(2)absorption loading,favorable phase separation behavior and h... The non-aqueous solid-liquid biphasic solvent of 2-amino-2-methyl-1-propanol(AMP)/piperazine(PZ)/dipropylene glycol dimethyl ether(DME)features a high CO_(2)absorption loading,favorable phase separation behavior and high regeneration efficiency.Different with the liquid-liquid phase change solvent,the reaction kinetics of CO_(2)capture into solid-liquid biphasic solvent was rarely studied.In the present work,the reaction kinetics of CO_(2)absorption into AMP/PZ/DME solid-liquid biphasic solvent was investigated into the double stirred kettle reactor.The absorption reaction followed a pseudo-first-order kinetic model according to the zwitterion mechanism.The overall reaction rate constant(kov)and the enhancement factor(E)of CO_(2)absorption both increased with increasing temperature.The total mass transfer resistance of the absorbent decreased with increasing temperature and increased with increasing absorption loading,so the higher reaction temperature was conducive to the absorption,and the liquid phase mass transfer resistance was the main factor affecting the absorption rate. 展开更多
关键词 CO^(2)capture solidliquid phase−change Reaction kinetics Heat duty
原文传递
Solid−liquid phase diagram of the KNO_(3)-Ca(NO_(3))_(2)-Mg(NO_(3))_(2)-H_(2)O system at 313.15 K
10
作者 Xiangxia Zeng Tao Zhang +3 位作者 Li Lv Wenxiang Tang Zongpeng Zou Shengwei Tang 《Chinese Journal of Chemical Engineering》 2025年第2期93-107,共15页
The enrichment of low-grade phosphate rock is an important process to realize sustainable support of phosphorus resources. An aqueous solution containing Ca(NO_(3))_(2) and Mg(NO_(3))_(2) is produced during the enrich... The enrichment of low-grade phosphate rock is an important process to realize sustainable support of phosphorus resources. An aqueous solution containing Ca(NO_(3))_(2) and Mg(NO_(3))_(2) is produced during the enrichment of low-grade phosphate rock by leaching of HNO_(3) or calcination coupling with leaching of NH_(4)NO_(3) solution. Preparation liquid fertilizer is a preferential way to utilize it. The liquid−solid phase diagrams of Ca(NO_(3))_(2)-Mg(NO_(3))_(2)-H_(2)O, KNO_(3)-Mg(NO_(3))_(2)-H_(2)O, KNO_(3)-Ca(NO_(3))_(2)-H_(2)O and KNO_(3)-Ca(NO_(3))_(2)-Mg(NO_(3))_(2)-H_(2)O systems at 313.15 K were studied by isothermal dissolution equilibrium method. Two crystallization regions of Ca(NO_(3))_(2)·4H_(2)O and Mg(NO_(3))_(2)·6H_(2)O were observed in the phase diagram of the ternary system Ca(NO_(3))_(2)-Mg(NO_(3))_(2)-H_(2)O, a liquid fertilizer with a maximal total nutrient content of 27.46% and a nutrients ratio of N:Ca:Mg = 8.40:10.37:1 can be formed. A homogenous solution can be formed by mixing Ca(NO_(3))_(2)·4H_(2)O and Mg(NO_(3))_(2)·6H_(2)O. In the ternary system KNO_(3)-Mg(NO_(3))_(2)-H_(2)O, the crystallization regions of KNO_(3), Mg(NO_(3))_(2)·6H_(2)O and the co-crystallization region of KNO_(3) and Mg(NO_(3))_(2)·6H_(2)O were observed. The obtained maximal total nutrient content of liquid fertilizer is 23.32% with the ratio of N:K_(2)O = 1:3.39. In the ternary system KNO_(3)-Ca(NO_(3))_(2)-H_(2)O, the crystallization regions of Ca(NO_(3))_(2)·4H_(2)O and KNO_(3) were observed. The obtained maximal total nutrient content of liquid fertilizer is 38.41% with the ratio of N:K_(2)O:Ca = 1.05:1.18:1. A homogenous solution can also be formed by mixing Ca(NO_(3))_(2)·4H_(2)O and KNO_(3) directly. In the quaternary system KNO_(3)-Ca(NO_(3))_(2)-Mg(NO_(3))_(2)-H_(2)O, the crystallization regions of Ca(NO_(3))_(2)·4H_(2)O, Mg(NO_(3))_(2)·6H_(2)O and KNO_(3) and the co-crystallization region of KNO_(3) and Mg(NO_(3))_(2)·6H_(2)O were observed. The obtained maximal total nutrient content of liquid fertilizer is 38.41% with the ratio of N:K_(2)O:Ca = 1.05:1.18:1. The modified BET model was successfully used to fit the solubility curves. The results can provide a guidance for the formulation of water-soluble fertilizers of N-(K, Ca, Mg). 展开更多
关键词 Calcium nitrate Magnesium nitrate liquid water-soluble fertilizer Phase equilibria BET model
在线阅读 下载PDF
Solidity到MSVL转换的等价性研究
11
作者 王小兵 常家俊 +2 位作者 李春奕 杨潇钰 赵亮 《软件学报》 北大核心 2025年第9期4006-4035,共30页
智能合约是运行在以太坊区块链上的脚本,能够处理复杂的业务逻辑.大多数的智能合约采用Solidity语言开发.近年来智能合约的安全问题日益突出,为此提出了一种采用时序逻辑程序设计语言(MSVL)与命题投影时序逻辑(PPTL)的智能合约形式化验... 智能合约是运行在以太坊区块链上的脚本,能够处理复杂的业务逻辑.大多数的智能合约采用Solidity语言开发.近年来智能合约的安全问题日益突出,为此提出了一种采用时序逻辑程序设计语言(MSVL)与命题投影时序逻辑(PPTL)的智能合约形式化验证方法,开发了SOL2M转换器,实现了Solidity程序到MSVL程序的半自动化建模,但是缺乏对Solidity与MSVL操作语义等价性的证明.首先采用大步语义的形式,从语义元素、求值规则、表达式以及语句这4个层次详细定义了Solidity的操作语义.其次给出了Solidity与MSVL的状态、表达式和语句之间的等价关系,并基于Solidity与MSVL的操作语义,使用结构归纳法对表达式操作语义进行等价证明,同时使用规则归纳法对语句操作语义进行等价证明. 展开更多
关键词 智能合约 solidITY 程序转换 操作语义 等价性证明
在线阅读 下载PDF
Multistate transition and coupled solid-liquid modeling of motion process of long-runout landslide 被引量:1
12
作者 Yang Gao Yueping Yin +3 位作者 Bin Li Han Zhang Weile Wu Haoyuan Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2694-2714,共21页
The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical... The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction. 展开更多
关键词 Long-runout landslide Multistate transition Mixed solidliquid flow Post-failure process Numerical simulation
在线阅读 下载PDF
Liquid metal as an efficient protective layer for lithium metal anodes in all-solid-state batteries 被引量:2
13
作者 Shiqiang Zhou Mengrui Li +7 位作者 Peike Wang Lukuan Cheng Lina Chen Yan Huang Boxuan Cao Suzhu Yu Qingju Liu Jun Wei 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期219-229,共11页
Lithium metal batteries with inorganic solid-state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high-energy content and safety.Nonetheless,i... Lithium metal batteries with inorganic solid-state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high-energy content and safety.Nonetheless,inherent challenges of deleterious lithium dendrite growth and poor interfacial stability hinder their commercial application.Herein,we report a liquid metal-coated lithium metal(LM@Li)anode strategy to improve the contact between lithium metal and a Li6PS5Cl inorganic electrolyte.The LM@Li symmetric cell shows over 1000 h of stable lithium plating/stripping cycles at 2mA cm^(-2) and a significantly higher critical current density of 9.8 mAcm^(-2) at 25°C.In addition,a full battery assembled with a high-capacity composite LiNbO3@-LiNi_(0.7)Co_(0.2)Mn_(0.1)O_(2)(LNO@NCM721)cathode shows stable cycling performance.Experimental and computational results have demonstrated that dendrite growth tolerance and physical contact in solid-state batteries can be reinforced by using LM interlayers for interfacial modification. 展开更多
关键词 all-solid-state batteries interface engineering liquid metals lithium metal anodes
在线阅读 下载PDF
From Liquid to Solid‑State Lithium Metal Batteries:Fundamental Issues and Recent Developments 被引量:2
14
作者 Zhao Zhang Wei‑Qiang Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期68-125,共58页
The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal ba... The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal batteries(LMBs),with their ultralow reduction potential and high theoretical capacity,are widely regarded as the most promising technical pathway for achieving high energy density batteries.In this review,we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs.Furthermore,we propose improved strategies involving interface engineering,3D current collector design,electrolyte optimization,separator modification,application of alloyed anodes,and external field regulation to address these challenges.The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them.This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes.Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface,leading to increased interface inhomogeneity—a critical factor contributing to failure in all-solidstate lithium metal batteries.Based on recent research works,this perspective highlights the current status of research on developing high-performance LMBs. 展开更多
关键词 Lithium metal batteries All-solid-state lithium metal battery Li dendrite solid electrolyte Interface
在线阅读 下载PDF
基于SolidWorks的球阀虚拟设计研究
15
作者 余志伟 《机械管理开发》 2025年第7期303-304,307,共3页
虚拟设计技术是以计算机仿真为前提的综合设计技术。在产品设计阶段,实时模拟产品开发全过程,满足现代企业开发新产品的需求。以SolidWorks软件为平台,以球阀为例,详细论述了复杂零件三维建模的方法和技巧,虚拟装配和干涉检查中的常见... 虚拟设计技术是以计算机仿真为前提的综合设计技术。在产品设计阶段,实时模拟产品开发全过程,满足现代企业开发新产品的需求。以SolidWorks软件为平台,以球阀为例,详细论述了复杂零件三维建模的方法和技巧,虚拟装配和干涉检查中的常见问题和解决办法,从而缩短产品的开发周期、提高产品设计质量、降低开发成本,对产品开发人员具有较高的参考价值。 展开更多
关键词 solidWORKS 实体建模 虚拟装配 干涉检查
在线阅读 下载PDF
SolidWorks中轴套类零件曲面上打斜孔的两种方法
16
作者 覃群 《机械管理开发》 2025年第4期255-256,259,共3页
论述了SolidWorks环境下,在轴及轴套类零件的圆柱面上造型倾斜位置孔的两种方法:草图驱动、设计库。详细说明了两种方法的造型过程及技巧并给出了应用实例。前者孔定位稍繁琐,但可造型不同类型的孔;后者定位较快捷,但孔的类型较固定,即... 论述了SolidWorks环境下,在轴及轴套类零件的圆柱面上造型倾斜位置孔的两种方法:草图驱动、设计库。详细说明了两种方法的造型过程及技巧并给出了应用实例。前者孔定位稍繁琐,但可造型不同类型的孔;后者定位较快捷,但孔的类型较固定,即为做设计库时造型的孔类型。通过分析认为,两种方法各有优劣,设计者可灵活选用。 展开更多
关键词 solidWORKS 轴套 孔造型 设计库
在线阅读 下载PDF
Industrial solid wastes to environmental protection materials for removal of gaseous pollutants:A review 被引量:2
17
作者 Jiacheng Bao Xin Sun +5 位作者 Ping Ning Kai Li Jie Yang Fei Wang Lei Shi Maohong Fan 《Green Energy & Environment》 SCIE EI CAS 2025年第1期34-83,共50页
The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective ... The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation. 展开更多
关键词 Industrial solid waste Reaction mechanism Modification method Air pollutants
在线阅读 下载PDF
Structure and dynamical properties during solidification of liquid aluminum induced by cooling and compression
18
作者 吴旻 杨永琪 王垚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期476-481,共6页
The structural transformation from a liquid into a crystalline solid is an important subject in condensed matter physics and materials science. In the present study, first-principles molecular dynamics calculations ar... The structural transformation from a liquid into a crystalline solid is an important subject in condensed matter physics and materials science. In the present study, first-principles molecular dynamics calculations are performed to investigate the structure and properties of aluminum during the solidification which is induced by cooling and compression. In the cooling process and compression process, it is found that the icosahedral short-range order is initially enhanced and then begin to decay, the face-centered cubic short-range order eventually becomes dominant before it transforms into a crystalline solid. 展开更多
关键词 first-principles method molecular dynamics short-range order liquid aluminum
原文传递
Solideliquid phase equilibria in the aqueous system containing the chlorides of potassium,ammonium,and calcium at 298.2,323.2,and 348.2 K
19
作者 Fuyu Zhuge Nan Zhang +3 位作者 Haiying Tang Qi Li Niancu Chen Xudong Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第12期83-94,共12页
In order to obtain the crystalline forms of the salts of the potassium,ammonium,calcium coexisting chloride system,the phase equilibria relationship of quaternary system K^(+),NH_(4)^(+),Ca^(2+)//Cl^(-)-H_(2)O at 298.... In order to obtain the crystalline forms of the salts of the potassium,ammonium,calcium coexisting chloride system,the phase equilibria relationship of quaternary system K^(+),NH_(4)^(+),Ca^(2+)//Cl^(-)-H_(2)O at 298.2,323.2,and 348.2 K was studied by isothermal dissolution equilibrium method.The solubility and density of equilibrium liquid phases of the system were experimentally determined;X-ray powder diffractometer was used to determine the compositions of the equilibrium solid phase at the quaternary invariant point.It is found that the quaternary system is a complex system at these three temperatures.The phase diagram at 298.2 K consists of three invariant points,seven univariate curves and five crystalline phase regions,forming the solid solutions(NH_(4)Cl)_(x)(KCl)_(1-x) and(KCl)_(x)(NH_(4)Cl)_(1-x);while at 323.2 and 348.2 K the phase diagram consists of five invariant points,eleven univariate curves and seven crystalline phase regions,the double salts(KClCaCl_(2))and(2NH_(4)Cl·CaCl_(2)·3H_(2)O),solid solutions(KCl)_(x)(NH_(4)Cl)_(1-x) and(NH_(4)Cl)_(x)(KCl)_(1-x) were formed.Among them,the crystalline phase region of solid solution(KCl)_(x)(NH_(4)Cl)_(1-x) is the largest at three temperatures,indicating that it is the easiest to crystallize in this system.Comparing the phase diagrams of the quaternary system at 298.2,323.2,and 348.2 K,it can be seen that the crystalline form of CaCl_(2) changes with the increase of temperature:CaCl_(2)·6H_(2)O at 298.2 K,CaCl_(2)·2H_(2)O at 323.2 and 348.2 K.From 323.2 to 348.2 K,the crystalline phase regions of(KCl·CaCl_(2))and(2NH_(4)Cl·CaCl_(2)·3H_(2)O)increased gradually. 展开更多
关键词 Phase equilibria SOLUBILITY HYDRATE Deep brine Double salt solid solution
在线阅读 下载PDF
Boosting high-performance in Zr-rich side protonic solid oxide electrolysis cells by optimizing functional interlayer 被引量:1
20
作者 Chunmei Tang Ning Wang +3 位作者 Sho Kitano Hiroki Habazaki Yoshitaka Aoki Siyu Ye 《Green Energy & Environment》 SCIE EI CAS 2025年第1期150-160,共11页
Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SO... Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability. 展开更多
关键词 Functional interlayer Zr-rich side electrolyte Protonic solid oxide electrolysis cells Current density Faradaic efficiency
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部