期刊文献+
共找到1,258篇文章
< 1 2 63 >
每页显示 20 50 100
A Numerical Study of Fluid Velocity and Temperature Distribution in Regenerative Cooling Channels for Liquid Rocket Engines
1
作者 Liang Yin Huanqi Zhang +1 位作者 Jie Ding Mehdi Khan 《Fluid Dynamics & Materials Processing》 2025年第8期1861-1873,共13页
In liquid rocket engines,regenerative cooling technology is essential for preserving structural integrity under extreme thermal loads.However,non-uniform coolant flow distribution within the cooling channels often lea... In liquid rocket engines,regenerative cooling technology is essential for preserving structural integrity under extreme thermal loads.However,non-uniform coolant flow distribution within the cooling channels often leads to localized overheating,posing serious risks to engine reliability and operational lifespan.This study employs a three-dimensional fluid–thermal coupled numerical model to systematically investigate the influence of geometric parameters-specifically the number of inlets,the number of channels,and inlet manifold configurations-on flow uniformity and thermal distribution in non-pyrolysis zones.Key findings reveal that increasing the number of inlets from one to three significantly enhances flow uniformity,reducing mass flow rate deviation from 1.2%to below 0.3%.However,further increasing the inlets to five yields only marginal improvements indicating diminishing(<0.1%),returns beyond three inlets.Additionally,temperature non-uniformity at the combustion chamber throat decreases by 37%-from 3050 K with 18 channels to 1915 K with 30 channels-highlighting the critical role of channel density in effective thermal regulation.Notably,while higher channel counts improve cooling efficiency,they also result in increased pressure losses of approximately 18%–22%,emphasizing the need to balance thermal performance against hydraulic resistance.An optimal configuration comprising 24 channels and three inlets was identified,providing minimal temperature gradients while maintaining acceptable pressure losses.The inlet manifold structure also plays a pivotal role in determining flow distribution.Configuration 3(Config-3),which features an enlarged manifold and reduced inlet velocity,achieves a 40%reduction in velocity fluctuations compared to Configuration 1(Config-1).This improvement leads to a more uniform mass flow distribution,with a relative standard deviation(RSD)of less than 0.15%.Furthermore,this design effectively mitigates localized hot spots near the nozzle-where temperature gradients are most severe-achieving a reduction of approximately 1135 K. 展开更多
关键词 Regenerative cooling flow distribution thermal load geometric parameters liquid rocket engine
在线阅读 下载PDF
Optimization and Sizing for Propulsion System of Liquid Rocket Using Genetic Algorithm 被引量:5
2
作者 Saqlain Akhtar 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第1期40-46,共7页
Flight vehicle conceptual design appears to be a promising area for application of the Genetic Algorithm (GA) as an approach to help to automate part of the design process. This computational research effort strives... Flight vehicle conceptual design appears to be a promising area for application of the Genetic Algorithm (GA) as an approach to help to automate part of the design process. This computational research effort strives to develop a propulsion system design strategy for liquid rocket to optimize take-off mass, satisfying the mission range under the constraint of axial overload. The method by which this process is accomplished by using GA as optimizer is outlined in this paper. Convergence of GA is improved by introducing initial population based on Design of Experiments Technique. 展开更多
关键词 liquid rocket propulsion system genetic algorithm design of experiments
在线阅读 下载PDF
An Overview of Bearing Candidates for the Next Generation of Reusable Liquid Rocket Turbopumps 被引量:7
3
作者 Jimin Xu Changhuan Li +2 位作者 Xusheng Miao Cuiping Zhang Xiaoyang Yuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第2期43-55,共13页
There is a consensus in the aerospace field that the development of reusable liquid rockets can effectively reduce the launch expense.The pursuit of a long service life and reutilization highly depends on the bearing ... There is a consensus in the aerospace field that the development of reusable liquid rockets can effectively reduce the launch expense.The pursuit of a long service life and reutilization highly depends on the bearing components.However,the rolling element bearings(REBs)used in the existing rocket turbopumps present obvious and increasing limitations due to their mechanical contacting mode.For REBs,high rotational speed and long service life are two performance indexes that mutually restrict each other.To go beyond the DN value(the product of the bearing bore and rotational speed)limit of REBs,the major space powers have conducted substantial explorations on the use of new types of bearings to replace the REB.This review discusses,first,the crucial role of bearings in rocket turbopumps and the related structural improvements of REBs.Then,with the prospect of application to the next generation of reusable liquid rocket turbopumps,the bearing candidates investigated by major space powers are summarized comprehensively.These promising alternatives to REBs include fluid-film,foil,and magnetic bearings,together with the novel superconducting compound bearings recently proposed by our team.Our more than ten years of relevant research on fluid-film and magnetic bearings are also introduced.This review is meaningful for the development of long-life and highly reliable bearings to be used in future reusable rocket turbopumps. 展开更多
关键词 AEROSPACE Reusable liquid rocket turbopumps Rolling element bearings Bearing candidates REVIEW
在线阅读 下载PDF
Coupled Lagrangian impingement spray model for doublet impinging injectors under liquid rocket engine operating conditions 被引量:5
4
作者 Qiang WEI Guozhu LIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1391-1406,共16页
To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray, the conventional uncoupled spray model for impinging injectors is extended by considering the coupling of the j... To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray, the conventional uncoupled spray model for impinging injectors is extended by considering the coupling of the jet impingement process and the ambient gas field. The new coupled model consists of the plain-orifice sub-model, the jet-jet impingement sub-model and the droplet collision sub-model. The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions.The overall model is benchmarked under various impingement angles, jet momentum and offcenter ratios. Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics, such as the mass flux and mixture ratio distributions in quiescent air. Besides, impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions. First, a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile. The minimum average droplet diameter is achieved when the orifices work in cavitation state, and is about 30% smaller than the steady single phase state. Second, the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°. The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines. 展开更多
关键词 Combustion chamber Doublet impinging injector Impingement spray model Lagrangian method liquid rocket engine
原文传递
A Comparative Study of Genetic Algorithm Parameters for the Inverse Problem-based Fault Diagnosis of Liquid Rocket Propulsion Systems 被引量:1
5
作者 Erfu Yang Hongjun Xiang +1 位作者 Dongbing Gu Zhenpeng Zhang 《International Journal of Automation and computing》 EI 2007年第3期255-261,共7页
Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be signi... Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be significantly enhanced by exploiting an efficient fault diagnosis system. Currently, inverse problem-based diagnosis has attracted a great deal of research attention in fault diagnosis domain. This methodology provides a new strategy to model-based fault diagnosis for monitoring the health of propulsion systems. To solve the inverse problems arising from the fault diagnosis of LRPSs, GAs have been adopted in recent years as the first and effective choice of available numerical optimization tools. However, the GA has many control parameters to be chosen in advance and there still lack sound theoretical tools to analyze the effects of these parameters on diagnostic performance analytically. In this paper a comparative study of the influence of GA parameters on diagnostic results is conducted by performing a series of numerical experiments. The objective of this study is to investigate the contribution of individual algorithm parameter to final diagnostic result and provide reasonable estimates for choosing GA parameters in the inverse problem-based fault diagnosis of LRPSs. Some constructive remarks are made in conclusion and will be helpful for the implementation of GA to the fault diagnosis practice of LRPSs in the future. 展开更多
关键词 liquid rocket propulsion systems inverse problem fault diagnosis genetic algorithm comparative study.
在线阅读 下载PDF
Progress in Technology of Main Liquid Rocket Engines of Launch Vehicles in China 被引量:10
6
作者 TAN Yonghua ZHAO Jian +1 位作者 CHEN Jianhua XU Zhiyu 《Aerospace China》 2020年第2期23-30,共8页
Liquid propellant rocket engines for a launch vehicle are an essential aerospace technology, representing the advanced level of hi-tech in a country. In recent years, China’s aerospace industry has made remarkable ac... Liquid propellant rocket engines for a launch vehicle are an essential aerospace technology, representing the advanced level of hi-tech in a country. In recent years, China’s aerospace industry has made remarkable achievements, and liquid rocket engine technology has also been effectively developed. In this article, the development processes of China’s liquid rocket engines are discussed. Then, the performance features of China’s new generation liquid rocket engines as well as the flight tests of the new-generation launch vehicles are introduced. Finally, the development direction and the most recent progress of the next generation large-thrust liquid rocket engine is presented. 展开更多
关键词 China’s aerospace industry liquid rocket engine technology progress
在线阅读 下载PDF
Research on Key Technologies for Reusable Liquid Rocket Engines 被引量:5
7
作者 LI Bin 《Aerospace China》 2022年第4期24-34,共11页
Based on current research,the development trend of reusable liquid rocket engines was analyzed.Key technologies and research focuses of the reusable liquid rocket engine have been analyzed and summarized,and then sugg... Based on current research,the development trend of reusable liquid rocket engines was analyzed.Key technologies and research focuses of the reusable liquid rocket engine have been analyzed and summarized,and then suggestions on the development of future key technologies are proposed. 展开更多
关键词 REUSABLE liquid rocket engine development trend key technology
在线阅读 下载PDF
Numerical and Experimental Characterizations of SiFRP Ablator for the Application to Liquid Rocket Engine Combustors
8
作者 Kenichi Hirai Kiyoshi Kinefuchi Toru Kamita 《Journal of Energy and Power Engineering》 2013年第3期440-464,共25页
The ablative material is supposed to be one of good candidates for LRE (liquid rocket engine) combustion chamber to achieve both high reliability and low cost and a numerical analysis for the ablator is considered t... The ablative material is supposed to be one of good candidates for LRE (liquid rocket engine) combustion chamber to achieve both high reliability and low cost and a numerical analysis for the ablator is considered to be a potentially efficient tool to reduce cost as well. So far, ablators have been successfully applied for many SRM (solid rocket motors), but the application to LRE is still quite limited in Japan. The authors believe that this is primarily because of the unpredictable nature of the heat load from combustion gases to the combustor wall. Indeed, reliable thermal design of ablative combustion chamber, namely reliable prediction of thermal performance, needs both reliable heat load model and reliable ablator response model. This paper elaborates our research activities and our recent research findings. 展开更多
关键词 Ablation heat shield liquid rocket engine surface recession silica phenolic.
在线阅读 下载PDF
First Systematic Testing Platform for Pressurization Feed System Developed for Liquid Rocket Propellant in China
9
作者 Zhang Yi Beijing Aerospace System Engineering Institute of CALT 《Aerospace China》 2011年第3期-,共1页
Beijing Aerospace System Engineering Institute of China Academy of Launch Vehicle Technology (CALT) declared recently that theinstitute has set up a laboratory whichwould operate a newly
关键词 CALT FEED First Systematic Testing Platform for Pressurization Feed System Developed for liquid rocket Propellant in China
在线阅读 下载PDF
Thermal state calculation of chamber in small thrust liquid rocket engine for steady state pulsed mode 被引量:2
10
作者 Alexey Gennadievich VOROBYEV Svatlana Sergeevna VOROBYEVA +1 位作者 Lihui ZHANG Evgeniy Nikolaevich BELIAEV 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第2期253-262,共10页
This paper presents a method of thermal state calculation of combustion chamber in small thrust liquid rocket engine. The goal is to predict the thermal state of chamber wall by using basic parameters of engine: thrus... This paper presents a method of thermal state calculation of combustion chamber in small thrust liquid rocket engine. The goal is to predict the thermal state of chamber wall by using basic parameters of engine: thrust level, propellants, chamber pressure, injection pattern, film cooling parameters, material of wall and their coating, etc. The difficulties in modeling the startup and shutdown processes of thrusters lie in the fact that there are the conjugated physical processes occurring at various parameters for non-design conditions. A mathematical model to predict the thermal state of the combustion chamber for different engine operation modes is developed. To simulate the startup and shutdown processes, a quasi-steady approach is applied by replacing the transient process with time-variant operating parameters of steady-state processes. The mathematical model is based on several principles and data commonly used for heat transfer modeling: geometry of flow part, gas dynamics of flow, thermodynamics of propellants and combustion spices, convective and radiation heat flows, conjugated heat transfer between hot gas and wall, and transient approach for calculation of thermal state of construction. Calculations of the thermal state of the combustion chamber in single-turn-on mode show good convergence with the experimental results. The results of pulsed modes indicate a large temperature gradient on the internal wall surface of the chamber between pulses and the thermal state of the wall strongly depends on the pulse duration and the interval. 展开更多
关键词 Combustion CHAMBER Film cooling Mathematical model NONSTATIONARY THERMAL MODE SMALL THRUST liquid rocket engine Steady pulse MODE THERMAL state
原文传递
Safety Analysis of Liquid Rocket Engine Using Bayesian Networks 被引量:1
11
作者 王华伟 严志强 《Defence Technology(防务技术)》 SCIE EI CAS 2007年第1期59-63,共5页
Safety analysis for liquid rocket engine has a great meaning for shortening development cycle, saving development expenditure and reducing development risk. The relationship between the structure and component of liqu... Safety analysis for liquid rocket engine has a great meaning for shortening development cycle, saving development expenditure and reducing development risk. The relationship between the structure and component of liquid rocket engine is much more complex, furthermore test data are absent in development phase. Thereby, the uncertainties exist in safety analysis for liquid rocket engine. A safety analysis model integrated with FMEA(failure mode and effect analysis) based on Bayesian networks (BN) is brought forward for liquid rocket engine, which can combine qualitative analysis with quantitative decision. The method has the advantages of fusing multi-information, saving sample amount and having high veracity. An example shows that the method is efficient. 展开更多
关键词 液体火箭发动机 安全分析 FMEA 贝叶斯网络 不确定信息
在线阅读 下载PDF
Sensitivity-based state and parameter moving horizon estimation method for liquid propellant rocket engine
12
作者 Zizhao WANG Dan WANG +2 位作者 Hongyu CHEN Zhijiang SHAO Zhengyu SONG 《Chinese Journal of Aeronautics》 2025年第7期46-60,共15页
The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessar... The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessary information for model predictive control.Despite the many advantages of MHE,long computation time has limited its applications for system-level models of liquid propellant rocket engines.To address this issue,we propose an asynchronous MHE method called advanced-multi-step MHE with Noise Covariance Estimation(amsMHE-NCE).This method computes the MHE problem asynchronously to obtain the states and parameters and can be applied to multi-threaded computations.In the background,the state and covariance estimation optimization problems are computed using multiple sampling times.In real-time,sensitivity is used to quickly approximate state and parameter estimates.A covariance estimation method is developed using sensitivity to avoid redundant MHE problem calculations in case of sensor degradation during engine reuse.The amsMHE-NCE is validated through three cases based on the space shuttle main engine system-level model,and we demonstrate that it can provide more accurate real-time estimates of states and parameters compared to other commonly used estimation methods. 展开更多
关键词 Sensitivity Moving horizon estimation Noise covariance estimation Parameter estimation liquid propellant rocket engine
原文传递
Gas film/regenerative composite cooling characteristics of the liquid oxygen/liquid methane (LOX/LCH4) rocket engine
13
作者 Xinlin LIU Jun SUN +3 位作者 Zhuohang JIANG Qinglian LI Peng CHENG Jie SONG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第8期631-649,共19页
The thermal protection of rocket engines is a crucial aspect of rocket engine design.In this paper,the gas film/regenerative composite cooling of the liquid oxygen/liquid methane(LOX/LCH4)rocket engine thrust chamber ... The thermal protection of rocket engines is a crucial aspect of rocket engine design.In this paper,the gas film/regenerative composite cooling of the liquid oxygen/liquid methane(LOX/LCH4)rocket engine thrust chamber was investigated.A gas film/regenerative composite cooling model was developed based on the Grisson gas film cooling efficiency formula and the one-dimensional regenerative cooling model.The accuracy of the model was validated through experiments conducted on a 6 kg/s level gas film/regenerative composite cooling thrust chamber.Additionally,key parameters related to heat transfer performance were calculated.The results demonstrate that the model is sufficiently accurate to be used as a preliminary design tool.The temperature rise error of the coolant,when compared with the experimental results,was found to be less than 10%.Although the pressure drop error is relatively large,the calculated results still provide valuable guidance for heat transfer analysis.In addition,the performance of composite cooling is observed to be superior to regenerative cooling.Increasing the gas film flow rate results in higher cooling efficiency and a lower gas-side wall temperature.Furthermore,the position at which the gas film is introduced greatly impacts the cooling performance.The optimal introduction position for the gas film is determined when the film is introduced from a single row of holes.This optimal introduction position results in a more uniform wall temperature distribution and reduces the peak temperature.Lastly,it is observed that a double row of holes,when compared to a single row of holes,enhances the cooling effect in the superposition area of the gas film and further lowers the gas-side wall temperature.These results provide a basis for the design of gas film/regenerative composite cooling systems. 展开更多
关键词 liquid oxygen/liquid methane(LOX/LCH4)rocket engine Gas film cooling Regenerative cooling Heat transfer characteristics
原文传递
Analysis of combustion instability via constant volume combustion in a LOX/RP-1 bipropellant liquid rocket engine 被引量:9
14
作者 ZHANG HuiQiang GA YongJing +1 位作者 WANG Bing WANG XiLin 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第4期1066-1077,共12页
Turbulent two-phase reacting flow in the chamber of LOX/RP-1 bipropellant liquid rocket engine is numerically investigated in this paper. The predicted pressure and mean axial velocity are qualitatively consistent wit... Turbulent two-phase reacting flow in the chamber of LOX/RP-1 bipropellant liquid rocket engine is numerically investigated in this paper. The predicted pressure and mean axial velocity are qualitatively consistent with the experimental measurements. The self-excited pressure oscillations are obtained without any disturbance introduced through the initial and boundary conditions. It is found that amount of abrupt pressure peaks appear frequently and stochastically in the head regions of the chamber, which are the important sources to drive and strengthen combustion instability. Such abrupt pressures are induced by local constant volume combustion, because local combustible gas mixtures with high temperature are formed and burnt out suddenly due to some fuel droplets reaching their critical state in a rich oxygen surrounding. A third Damkhler number is defined as the ratio of the characteristic time of a chemical reaction to the characteristic time of a pressure wave expansion to measure the relative intensity of acoustic propagation and combustion process in thrusters. The analysis of the third Damkhler number distributions in the whole thrust chamber shows that local constant volume combustion happens in the head regions, while constant pressure combustion presents in the downstream regions. It is found that the combustion instability occurs in the head regions within about 30 mm from the thruster head. 展开更多
关键词 combustion instability constant volume combustion spray combustion LOX/RP-1 bipropellant liquid rocket engine third Damkohler number
原文传递
Genetic Algorithm to Optimize the Design of Main Combustor and Gas Generator in Liquid Rocket Engines 被引量:5
15
作者 Min Son Sangho Ko Jaye Koo 《Journal of Thermal Science》 SCIE EI CAS CSCD 2014年第3期259-268,共10页
A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was... A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design. 展开更多
关键词 liquid rocket Engine Main Combustor Gas Generator OPTIMIZATION Genetic Algorithm
原文传递
Conceptual Design for a Kerosene Fuel-rich Gas-generator of a Turbopump-fed Liquid Rocket Engine 被引量:3
16
作者 Min Son Jaye Koo +1 位作者 Won Kook Cho Eun Seok Lee 《Journal of Thermal Science》 SCIE EI CAS CSCD 2012年第5期428-434,共7页
A design method for a kerosene fuel-rich gas-generator of a liquid rocket engine using turbopumps to supply propellant was performed at a conceptual level. The gas-generator creates hot gases, enabling the turbine to ... A design method for a kerosene fuel-rich gas-generator of a liquid rocket engine using turbopumps to supply propellant was performed at a conceptual level. The gas-generator creates hot gases, enabling the turbine to operate the turbopumps. A chemical non-equilibrium analysis and a droplet vaporization model were used for the estimation of the burnt gas properties and characteristic chamber length. A premixed counter-flow flame analysis was performed for the prediction of the burnt gas properties, namely the temperature, the specific heat ratio and heat capacity, and the chemical reaction time. To predict the vaporization time, the Spalding model, using a single droplet in convective condition, was used. The minimum residence time in the chamber and the characteristic length were calculated by adding the reaction time and the vaporization time. Using the characteristic length, the design methods for the fuel-rich gas-generator were established. Finally, a parametric study was achieved for the effects of the O/F ratio, mass flow rate, chamber pressure, initial droplet temperature, initial droplet diameter and initial droplet velocity. 展开更多
关键词 liquid rocket engine Conceptual design Fuel-rich gas-generator Sensitivity analysis
原文传递
Verification on Spray Simulation of a Pintle Injector for Liquid Rocket Engine 被引量:16
17
作者 Min Son Kijeong Yu +2 位作者 Kanmaniraja Radhakrishnan Bongchul Shin Jaye Koo 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第1期90-96,共7页
The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner struct... The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids. 展开更多
关键词 Spray characteristics Pintle injector Simulation Experiment liquid rocket engine
原文传递
Development of Preliminary Design Program for Combustor of Regenerative Cooled Liquid Rocket Engine 被引量:3
18
作者 Won Kook Cho Woo Seok Seol +2 位作者 Min Son Min Kyo Seo Jaye Koo 《Journal of Thermal Science》 SCIE EI CAS CSCD 2011年第5期467-473,共7页
An integrated program was established to design a combustor for a liquid rocket engine and to analyze regenerative cooling results on a preliminary design level.Properties of burnt gas from a kerosene-LOx mixture in t... An integrated program was established to design a combustor for a liquid rocket engine and to analyze regenerative cooling results on a preliminary design level.Properties of burnt gas from a kerosene-LOx mixture in the combustor and rocket performance were calculated from CEA which is the code for the calculation of chemical equilibrium.The heat transfer of regenerative cooling was analyzed by using SUPERTRAPP code for coolant properties and by one-dimensional correlations of the heat transfer coefficient from the combustor liner to the coolant.Profiles of the combustors of F-1 and RS-27A engines were designed from similar input data and the present results were compared to actual data for validation.Finally,the combustors of 30 tonf class,75 tonf class and 150 tonf class were designed from the required thrust,combustion chamber,exit pressure and mixture ratio of propellants.The wall temperature,heat flux and pressure drop were calculated for heat transfer analysis of regenerative cooling using the profiles. 展开更多
关键词 liquid rocket engine Preliminary design of Combustor Regenerative cooling
原文传递
Numerical simulation of axial liquid film cooling in rocket combustor 被引量:1
19
作者 YANG Wei SUN Bing ZHENG Li-ming 《航空动力学报》 EI CAS CSCD 北大核心 2013年第2期459-465,共7页
Numerical simulation has been done for liquid film cooling in liquid rocket combustor.Multiple species of axial Navier-Stokes equations have been solved for liquid-film / hot-gas flow field,and k-εequations have been... Numerical simulation has been done for liquid film cooling in liquid rocket combustor.Multiple species of axial Navier-Stokes equations have been solved for liquid-film / hot-gas flow field,and k-εequations have been used for compressible turbulent flow.The results of the model agree well with the results of software FLUENT.The results show that :(1) Liquid film can decrease the wall heat flux and temperature effectively,and the cold border area formed by the film covers the whole combustor and nozzle wall.(2) The turbulent viscosity is higher than the physical viscosity,and its biggest value is in the border area of the convergent area in nozzle.The effect of turbulent flow on the whole simulation field can not be ignored.(3) The mass fraction of kerosene at the film inlet is 1,but it decreases along the nozzle wall and achieves its lowest value at the outlet.However,the mass fraction of kerosene near the wall is the biggest at any axial location. 展开更多
关键词 liquid rocket engine liquid film cooling heat flux numerical simulation turbulent flow
原文传递
Study of pressure surge during priming phase of start transient in an initially unprimed pump-fed liquid rocket engine 被引量:1
20
作者 Debanjan Das P.Padmanabhan 《Propulsion and Power Research》 SCIE 2022年第3期353-375,共23页
In this paper, transient phenomenon during start up process of a pump fed liquidrocket engine is investigated through numerical simulation. The engine studied in this workis designed such that engine systems are not w... In this paper, transient phenomenon during start up process of a pump fed liquidrocket engine is investigated through numerical simulation. The engine studied in this workis designed such that engine systems are not wetted with propellant until the engine is com-manded to start. This is achieved by positioning the valves for propellant admission at the inter-face of test stand/flight stage and the engine. To evaluate engine performance during starttransient for such systems, unsteady flow simulation was conducted using Method of Charac-teristics and equations for priming. The same has been reported in this work. The results indi-cated a brief period of abrupt pressure rise at pump upstream after opening of the propellantadmission valves, during the process of priming of engine systems at valve downstream.The peak pressure obtained was significantly higher than the propellant tank pressure as wellas the steady state pump suction pressure. The transitory pressure rise was found to occurdue to flow resistance at impeller inlet caused by formation of a forced vortex for orientingthe flow through impeller blades during off design transient regime. The maximum pressureat pump upstream, as computed from start transient simulation, was used as a design inputfor pump inlet feed lines. The engine was realized and subsequently qualified in a ground test facility. Hot test data obtained for pressure and flow rate during transient regime were found tobe in good agreement with the simulation results. 展开更多
关键词 Method of Characteristics Priming analysis liquid rocket engines Start transient Off design pump losses
原文传递
上一页 1 2 63 下一页 到第
使用帮助 返回顶部