期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Thermo-Hydrodynamic Characteristics of Hybrid Nanofluids for Chip-Level Liquid Cooling in Data Centers: A Review of Numerical Investigations 被引量:1
1
作者 Yifan Li Congzhe Zhu +2 位作者 Zhihan Lyu Bin Yang Thomas Olofsson 《Energy Engineering》 2025年第9期3525-3553,共29页
The growth of computing power in data centers(DCs)leads to an increase in energy consumption and noise pollution of air cooling systems.Chip-level cooling with high-efficiency coolant is one of the promising methods t... The growth of computing power in data centers(DCs)leads to an increase in energy consumption and noise pollution of air cooling systems.Chip-level cooling with high-efficiency coolant is one of the promising methods to address the cooling challenge for high-power devices in DCs.Hybrid nanofluid(HNF)has the advantages of high thermal conductivity and good rheological properties.This study summarizes the numerical investigations of HNFs in mini/micro heat sinks,including the numerical methods,hydrothermal characteristics,and enhanced heat transfer technologies.The innovations of this paper include:(1)the characteristics,applicable conditions,and scenarios of each theoretical method and numerical method are clarified;(2)the molecular dynamics(MD)simulation can reveal the synergy effect,micro motion,and agglomeration morphology of different nanoparticles.Machine learning(ML)presents a feasiblemethod for parameter prediction,which provides the opportunity for the intelligent regulation of the thermal performance of HNFs;(3)the HNFs flowboiling and the synergy of passive and active technologies may further improve the overall efficiency of liquid cooling systems in DCs.This review provides valuable insights and references for exploring the multi-phase flow and heat transport mechanisms of HNFs,and promoting the practical application of HNFs in chip-level liquid cooling in DCs. 展开更多
关键词 Data centers chip-level liquid cooling hybrid nanofluid energy transport characteristic hydrodynamic performance numerical investigation
在线阅读 下载PDF
Experimental Study on a Hybrid Battery Thermal Management System Combining Oscillating Heat Pipe and Liquid Cooling
2
作者 Hongkun Lu M.M.Noor K.Kadirgama 《Frontiers in Heat and Mass Transfer》 2025年第1期299-324,共26页
To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling... To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling.The primary innovation of the new hybrid BTMS lies in the use of an OHP with vertically arranged evaporator and condenser,enabling dual heat transfer pathways through liquid cooling plate and OHP.This study experimentally investigates the performance characteristics of the⊥-shaped OHP and hybrid BTMS.Results show that lower filling ratios significantly enhance the OHP’s startup performance but reduce operational stability,with optimal performance achieved at a 26.1%filling ratio.Acetone,as a single working fluid,exhibited superior heat transfer performance under low-load conditions compared to mixed fluids,while the acetone/ethanol mixture,forming a non-azeotropic solution,minimized temperature fluctuations.At 100 W,the⊥-shaped OHP with a horizontally arranged evaporator demonstrated better heat transfer performance than 2D-OHP designs.Compared to a liquid BTMS using water coolant at 280 W,the hybrid BTMS reduced the equivalent thermal resistance(RBTMS)and maximum temperature difference(ΔTmax)by 8.06%and 19.1%,respectively.When graphene nanofluid was used as the coolant in hybrid BTMS,the battery pack’s average temperature(Tb)dropped from 52.2℃ to 47.9℃,with RBTMS andΔTmax decreasing by 20.1%and 32.7%,respectively.These findings underscore the hybrid BTMS’s suitability for high heat load applications,offering a promising solution for electric vehicle thermal management. 展开更多
关键词 Battery thermal management system oscillating heat pipe liquid cooling hybrid BTMS graphene nanofluid
在线阅读 下载PDF
Influence Mechanism of the Nano-Structure on Phase Change Liquid Cooling Features for Data Centers
3
作者 Yifan Li Congzhe Zhu +1 位作者 Rong Gao Bin Yang 《Energy Engineering》 2025年第11期4523-4539,共17页
The local overheating issue is a serious threat to the safe operation of data centers(DCs).The chip level liquid cooling with pool boiling is expected to solve this problem.The effect of nano configuration and surface... The local overheating issue is a serious threat to the safe operation of data centers(DCs).The chip level liquid cooling with pool boiling is expected to solve this problem.The effect of nano configuration and surface wettability on the boiling characteristics of copper surfaces is studied using molecular dynamics(MD)simulation.The argon is chosen as the coolant,and the wall temperature is 300 K.The main findings and innovations are as follows.(1)Compared to the smooth surface and fin surface,the cylindrical nano cavity obtains the superior boiling performance with earlier onset of nucleate boiling(ONB),larger heat flux because of the higher heat transport rate.(2)The nano cavity with hydrophilicity can improve the response speed and heat dissipation efficiency.Compared to the contact angleθ=121°,the formation times of nucleate bubble and film boiling for theθ=0°are reduced by 90.84%and 93.57%,respectively.(3)A deeper cavity of 3.3 nm is beneficial for triggering boiling and improving the heat dissipation rate.The highest heat flux can be achieved at 21.86 x 10°W/m2,which can meet the cooling requirements of the micro devices with ultra-high heat flux(107-108 W/m2).The coupling effect of nano configuration and surface wettability is illustrated,and the essential reasons for the enhanced heat transport are revealed.The findings can guide the optimization of cooling systems and promote the practical application of phase change liquid cooling in DCs. 展开更多
关键词 Pool boiling characteristic nano configuration surface wettability structure parameter liquid cooling efficiency
在线阅读 下载PDF
Performance Optimization of a U-Shaped Liquid Cooling Plate:A Synergistic Study of FlowGuide Plate and Spoiler Columns
4
作者 Jing Hu Xiaoyu Zhang 《Frontiers in Heat and Mass Transfer》 2025年第3期957-974,共18页
As a core power device in strategic industries such as new energy power generation and electric vehicles,the thermal reliability of IGBT modules directly determines the performance and lifetime of the whole system.A s... As a core power device in strategic industries such as new energy power generation and electric vehicles,the thermal reliability of IGBT modules directly determines the performance and lifetime of the whole system.A synergistic optimization structure of“inlet plate-channel spoiler columns”is proposed for the local hot spot problem during the operation of Insulated Gate Bipolar Transistor(IGBT),combined with the inherent defect of uneven flow distribution of the traditional U-type liquid cooling plate in this paper.The influences of the shape,height(H),and spacing from the spoiler column(b)of the plate on the comprehensive heat dissipation performance of the liquid cooling plate are analyzed at different Reynolds numbers,A dual heat source strategy is introduced and the effect of the optimized structure is evaluated by the temperature inhomogeneity coefficient(Φ).The results show that the optimum effect is achieved when the shape of the plate is square,H=4.5 mm,b=2 mm,and u=0.05 m/s,at which the HTPE=1.09 and Φ are reduced by 40%.In contrast,the maximum temperatures of the IGBT and the FWD(Free Wheeling Diode)chips are reduced by 8.7 and 8.4 K,respectively,and ΔP rises by only 1.58 Pa while keeping ΔT not significantly increased.This optimized configuration achieves a significant reduction in the critical chip temperature and optimization of the flow field uniformity with almost no change in the system flow resistance.It breaks through the limitation of single structure optimization of the traditional liquid cooling plate and effectively solves the problem of uneven flow in the U-shaped cooling plate,which provides a new solution with important engineering value for the thermal management of IGBT modules. 展开更多
关键词 U-shaped liquid cooling plate flow guide plate spoiler columns optimization
在线阅读 下载PDF
Research on Performance Optimization of Liquid Cooling and Composite Phase Change Material Coupling Cooling Thermal Management System for Vehicle Power Battery 被引量:1
5
作者 Gang Wu Feng Liu +3 位作者 Sijie Li Na Luo Zhiqiang Liu Yuqaing Li 《Journal of Renewable Materials》 SCIE EI 2023年第2期707-730,共24页
The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pac... The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%. 展开更多
关键词 Power battery thermal management phase change materials liquid cooling
在线阅读 下载PDF
Thermal Simulation for Two-Phase Liquid Cooling 3D-ICs
6
作者 Hong-Wen Chiou Yu-Min Lee 《Journal of Computer and Communications》 2016年第15期33-45,共13页
This work presents an algorithm for simulating more accurate temperature distribution in two-phase liquid cooling for three-dimensional integrated circuits than the state of-the-art methods by utilizing local multi-li... This work presents an algorithm for simulating more accurate temperature distribution in two-phase liquid cooling for three-dimensional integrated circuits than the state of-the-art methods by utilizing local multi-linear interpolation techniques on heat transfer coefficients between the microchannel and silicon substrate, and considering the interdependence between the thermal conductivity of silicon and temperature values. The experimental results show that the maximum and average errors are only 9.7% and 6.7% compared with the measurements, respectively. 展开更多
关键词 Thermal Simulation MICROCHANNEL Two-Phase liquid cooling
在线阅读 下载PDF
Investigation of Liquid Cooling Plate for Server CPUs Based on Topology Optimization
7
作者 Guijun Ai Yingying Luo Wei Su 《Journal of Electronics Cooling and Thermal Control》 2024年第1期1-34,共34页
In this study, a microchannel liquid cooling plate (LCP) is proposed for Intel Xeon 52.5 mm * 45 mm packaged architecture processors based on topology optimization (TO). Firstly, a mathematical model for topology opti... In this study, a microchannel liquid cooling plate (LCP) is proposed for Intel Xeon 52.5 mm * 45 mm packaged architecture processors based on topology optimization (TO). Firstly, a mathematical model for topology optimization design of the LCP is established based on heat dissipation and pressure drop objectives. We obtain a series of two-dimensional (2D) topology optimization configurations with different weighting factors for two objectives. It is found that the biomimetic phenomenon of the topologically optimized flow channel structure is more pronounced at low Reynolds numbers. Secondly, the topology configuration is stretched into a three-dimensional (3D) model to perform CFD simulations under actual operating conditions. The results show that the thermal resistance and pressure drop of the LCP based on topology optimization achieve a reduction of approximately 20% - 50% compared to traditional serpentine and microchannel straight flow channel structures. The Nusselt number can be improved by up to 76.1% compared to microchannel straight designs. Moreover, it is observed that under high flow rates, straight microchannel LCPs exhibit significant backflow, vortex phenomena, and topology optimization structures LCPs also tend to lead to loss of effectiveness in the form of tree root-shaped branch flows. Suitable flow rate ranges for LCPs are provided. Furthermore, the temperature and pressure drop of experimental results are consistent with the numerical ones, which verifies the effectiveness of performance for topology optimization flow channel LCP. 展开更多
关键词 CPU SEVER Data Center Topology Optimization liquid cooling Plate
在线阅读 下载PDF
Research on Thermal Management Control Strategy of Electric Vehicle Liquid Cooling Battery Pack
8
作者 Zhenhua Li 《Modern Electronic Technology》 2021年第2期36-40,共5页
Due to the risk of thermal runaway in the charging and discharging process of a soft packed lithium battery pack for electric vehicles,a stamping channel liquid cooling plate cooling system is designed,and then the he... Due to the risk of thermal runaway in the charging and discharging process of a soft packed lithium battery pack for electric vehicles,a stamping channel liquid cooling plate cooling system is designed,and then the heat dissipation problem of the battery pack is solved through reasonable thermal management control strategy.Using computational fluid dynamics simulation software star-CCM+,the thermal management control strategy is optimized through simulation technology,and the temperature field distribution of battery pack is obtained.Finally,an experimental platform is built,combined with experiments,the effectiveness of the thermal management control strategy of the cooling system is verified.The results show that when the battery pack is in the environment of 25℃,the maximum temperature of the cooling system can be lower than 40℃,the maximum temperature difference between all single batteries is within 5℃,and the maximum temperature difference between inlet and outlet coolant is 3℃,which can meet the heat dissipation requirements of the battery pack and prevent out of control heat generation. 展开更多
关键词 Electric vehicle Power battery liquid cooling system Computational fluid dynamics Analogue simulation
在线阅读 下载PDF
Optimization Study on Battery Thermal Management System With Coupled Air and Microchannel Liquid Cooling Strategy
9
作者 Xiaolu Yuan Xintian Xu +2 位作者 Chenghui Qiu Zhuo Zeng Yufei Cai 《International Journal of Mechanical System Dynamics》 2025年第4期775-788,共14页
Because of the surging demand for clean energy,the performance and safety of lithium-ion batteries(LIBs)for energy storage and conversion have received much attention.This study presents a battery thermal management s... Because of the surging demand for clean energy,the performance and safety of lithium-ion batteries(LIBs)for energy storage and conversion have received much attention.This study presents a battery thermal management system(BTMS)that combines air cooling with microchannel liquid cooling.The system is optimized to significantly improve heat dissipation efficiency and reduce energy consumption.The study utilizes computational fluid dynamics(CFD)simulations to analyze the effects of various air supply velocities,microchannel cross-sectional dimensions,and cooling water flow rates on the thermal performance,which leads to a step-by-step optimization and an overall improvement of the BTMS performance.The balance between BTMS thermal performance and energy consumption is achieved by expanding the thermal performance data samples using the orthogonal method and subsequent multi-objective optimization of energy consumption and heat dissipation using the entropy-weighted Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method to determine the optimal operating parameters.This study highlights the potential for optimizing LIB thermal management through parameter tuning and validates the effectiveness of a comprehensive optimized hybrid cooling strategy in improving battery performance and safety. 展开更多
关键词 battery thermal management system(BTMS) entropy weight TOPSIS method hybrid BTMS lithium-ion batteries microchannel liquid cooling
原文传递
Fracture properties of heated granite in different water-immersion durations after liquid nitrogen cooling
10
作者 Haohan Wang Lei Zhou +3 位作者 Zheming Zhu Xin Shui Fukuan Nie Bang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第12期7800-7818,共19页
Liquid nitrogen(LN_(2))assisted fracturing has received considerable attention in hot dry rock reservoir reforming.In this paper,the cracked straight through Brazilian disc(CSTBD)specimen was used to investigate the e... Liquid nitrogen(LN_(2))assisted fracturing has received considerable attention in hot dry rock reservoir reforming.In this paper,the cracked straight through Brazilian disc(CSTBD)specimen was used to investigate the effect of water-immersion duration's effect on fracture characteristics of heated granite cooled by LN_(2).The target temperature ranges from 25℃to 600℃.The heated granite was cooled in LN_(2)to−196℃and then immersed in water for different durations of time.The CSTBD specimens were subjected to static compression and dynamic impact by a split Hopkinson pressure bar(SHPB).The results show that in static compression,granite's mode-I fracture toughness decreases with increasing temperature,and static maximum principal strain(ε_(1s))and static crack tip opening displacement(CTODs)increase with increasing temperature.When the heating temperature is the same,fracture toughness reaches the minimum and maximum when water-immersion durations are 0.5 min and 1 min,respectively.At 25℃-600℃,ε_(1s)and CTODs are maximum when immersed in water for 0.5 min.At 400℃,the longer the granite is immersed in water,the dynamic fracture toughness(DFT)increases and then decreases under dynamic impact.The dynamic initiation toughness is less than the DFT,reaching the maximum at 0.5 min.Under dynamic impact,dynamic crack tip opening displacement(CTODD)and the maximum principal strain decrease and then increase,reaching their maximum at 1.5 min.At 400℃,the DFT and the CTODD under dynamic impact are 239.06%and 263.15%larger than those at static compression when immersed in water for 1.5 min. 展开更多
关键词 Hot dry rock Fracture characteristic liquid nitrogen(LN_(2))cooling Water-immersion duration Dynamic impact
在线阅读 下载PDF
Laser surface melting AZ31B magnesium alloy with liquid nitrogen-assisted cooling 被引量:9
11
作者 崔泽琴 施海霞 +1 位作者 王文先 许并社 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1446-1453,共8页
Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid... Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid nitrogen-assisted cooling(LNSC) was carried out to get the higher cooling rate and improve the surface properties. The experimental results were compared with those of Ar gas protection at room temperature. The samples after LSM with LNSC resulted in a thinner melted layer, a highly homogeneous, refined melted microstructure and formed a lot of worm-like nanocrystals and local amorphous structures. Microhardness of the melted layer with LNAC was improved to HV 90-148 as compared to HV 65-105 of the samples with Ar gas protection. The corrosion resistance of the melted layer in a 3.5% Na Cl solution(mass fraction) was improved because of the grain refinement and redistribution of β-Mg17Al12 phases following rapid quenching associated with the process. 展开更多
关键词 magnesium alloy laser surface melting liquid nitrogen-assisted cooling MICROHARDNESS corrosion resistance
在线阅读 下载PDF
Experimental investigation on a novel liquid cooling device for a prismatic Li-ion battery module operating at high ambient temperature 被引量:4
12
作者 XU JiaWei ZHOU TianShu XU XinHai 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第10期2147-2153,共7页
A novel liquid cooling device for a prismatic LiFePO4 battery module was proposed and manufactured in this study in order to improve the thermal management performance of the battery module operating at high ambient t... A novel liquid cooling device for a prismatic LiFePO4 battery module was proposed and manufactured in this study in order to improve the thermal management performance of the battery module operating at high ambient temperature.A testing system was set up to experimentally measure temperatures in different locations of the battery module consisting of seven 60 Ah cells.Tests were conducted to investigate both the passive and active cooling performances of the proposed system at different ambient temperatures and discharging rates in regarding with the maximum temperature and difference between the maximum and minimum temperatures.The results clearly show that both the ambient temperature and discharging rate play important role on the maximum temperature of the battery module.Passive cooling cannot meet the cooling requirement of the battery module particularly at high ambient temperature of 40℃.In contrary,liquid cooling can successfully reduce the maximum temperature to the required temperature range of the battery module even in high temperature environment and relatively high discharging rate.The effect of water inlet temperature on the cooling performance was also experimentally studied.With the inlet temperature of 28℃,the active cooling device can reduce the maximum temperature of the battery module to about 34.8℃after discharging at 0.6℃for 1000 s.The temperature difference of only 3.8℃was also achieved which suggests a great uniform distribution of temperature in the battery module. 展开更多
关键词 liquid cooling maximum temperature temperature difference Li-ion battery cold plate thermal management
原文传递
Operation Optimization of Liquid Cooling Systems in Data Centers by the Heat Current Method and Artificial Neural Network 被引量:3
13
作者 SHAO Wei CHEN Qun +1 位作者 HE Kelun ZHANG Mengqi 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第4期1063-1075,共13页
Liquid cooling systems in data centers have been attracting more attentions due to its better cooling capability and less energy consumption. In order to propose an effective optimization method for the operation of i... Liquid cooling systems in data centers have been attracting more attentions due to its better cooling capability and less energy consumption. In order to propose an effective optimization method for the operation of indirect liquid cooling systems, this paper first constructs an experiment platform and applies the heat current method to build the global heat transfer constraints of the whole system. Particularly, the thermal conductance of each heat exchanger under different working conditions is predicted by the Artificial Neural Networks(ANN) trained by the historical data. On this basis, combining the heat transfer and fluid flow constraints together with the Lagrange multiplier method builds the optimization model with the objective of minimum pumping power consumption(PPC), solving which by the solution strategy designed obtains the optimal frequencies of the variable frequency pumps(VFPs). Operating with the optimal and other feasible operating conditions validates the optimization model. Meanwhile, the experiments with variable heat loads and flow resistances provide some guidelines for the optimal system operation. For instance, to address heat load increase of a branch, it needs to increase the frequencies of the VFPs, not only the corresponding hot loop but also the whole cold loop. 展开更多
关键词 liquid cooling system energy conservation heat current method global heat transfer constraints artificial neural network
原文传递
Immersed liquid cooling Nd:YAG slab laser oscillator
14
作者 叶志斌 周小龙 +3 位作者 江舒 黄萌 吴飞 雷冬阁 《Chinese Optics Letters》 SCIE EI CAS CSCD 2023年第8期48-54,共7页
An immersed liquid cooling slab laser is demonstrated with deionized water as the coolant and a Nd:YAG slab as the gain medium.Using waveguides,a highly uniform pump beam distribution is achieved,and the flow velocity... An immersed liquid cooling slab laser is demonstrated with deionized water as the coolant and a Nd:YAG slab as the gain medium.Using waveguides,a highly uniform pump beam distribution is achieved,and the flow velocity distribution is also optimized in the channels of the gain module(GM).At various flow velocities,the convective heat transfer coefficient(CHTC)is obtained.Experimentally,a maximum output power of 434 W is obtained with an optical–optical efficiency of 27.1%and a slope efficiency of 36.6%.To the best of our knowledge,it is the highest output power of an immersed liquid cooling laser oscillator with a single Nd:YAG slab. 展开更多
关键词 liquid cooling SLAB laser oscillator convective heat transfer coefficient
原文传递
Analysis and optimization of thermal management system for cylindrical power battery based on distributed liquid cooling plates
15
作者 ZHAO Yang ZHANG Tao +2 位作者 WANG Chun TANG YinBo XI Huan 《Science China(Technological Sciences)》 CSCD 2024年第12期3695-3706,共12页
To ensure the battery works in a suitable temperature range,a new design for distributed liquid cooling plate is proposed,and a battery thermal management system(BTMS)for cylindrical power battery pack based on the pr... To ensure the battery works in a suitable temperature range,a new design for distributed liquid cooling plate is proposed,and a battery thermal management system(BTMS)for cylindrical power battery pack based on the proposed cooling plate is also investigated.To verify the accuracy of the battery model and battery pack numerical calculation model used for simulation,an experiment is conducted for the liquid cooling BTMS.The influence of key working parameters,including the cooling water inlet flow,ambient temperature and working conditions,are investigated.The results show that at the discharge rate of 3 C,the best cooling performance can be achieved when the total inlet mass flow rate is 3.2 g/s and the flow distribution is 3:1:1:3.The obtained maximum temperature is 29.6℃ and the maximum temperature difference is 2.1℃.When the ambient temperature is in the range of 20℃ to 50℃,the proposed BTMS can keep the temperature of battery pack in the proper range.Finally,different inlet flow rates are recommended according to different battery working states. 展开更多
关键词 lithium battery battery model battery thermal management liquid cooling plate distributed cooling
原文传递
Directional Solidification Assisted by Liquid Metal Cooling 被引量:27
16
作者 Jian ZHANG Langhong LOU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第3期289-300,共12页
An overview of the development and current status of the directional solidification process assisted by liquid metal cooling (LMC) has been presented in this paper. The driving force of the rapid development of the ... An overview of the development and current status of the directional solidification process assisted by liquid metal cooling (LMC) has been presented in this paper. The driving force of the rapid development of the LMC process has been analyzed by considering the demands of (1) newer technologies that can provide higher thermal gradients for alleviated segregation in advanced alloy systems, and (2) better production yield of the large directionally solidified superalloy components. The brief history of the industrialization of the LMC process has been reviewed, followed by the discussion on the LMC parameters including selection of the cooling media, using of the dynamic baffle, and the influence of withdrawal rates and so on. The microstructure and mechanical properties of the traditional superalloys processed by LMC, as well as the new alloys particularly developed for LMC process were then described. Finally, future aspects concerning the LMC process have been summarized. 展开更多
关键词 Directional solidification liquid metal cooling SUPERALLOYS MICROSTRUCTURE Mechanical properties
在线阅读 下载PDF
Numerical investigation of transcritical liquid film cooling in a methane/oxygen rocket engine 被引量:2
17
作者 YANG Wei SUN Bing 《航空动力学报》 EI CAS CSCD 北大核心 2011年第4期903-916,共14页
Transcritical film cooling was investigated by numerical study in a methane cooled methane/oxygen rocket engine.The respective time-averaged Navier-Stokes equations have been solved for the compressible steady three-d... Transcritical film cooling was investigated by numerical study in a methane cooled methane/oxygen rocket engine.The respective time-averaged Navier-Stokes equations have been solved for the compressible steady three-dimensional(3-D) flow.The flow field computations were performed using the semi-implicit method for pressure linked equation(SIMPLE) algorithm on several blocks of nonuniform collocated grid.The calculation was conducted over a pressure range of 202 650.0 Pa to 1.2×107 Pa and a temperature range of 120.0 K to 3 568.0 K.Twenty-nine different cases were simulated to calculate the impact of different factors.The results show that mass flow rate,length,diameter,number and diffused or convergence of film jet channel,injection angle and jet array arrangements have great impact on transcritical film cooling effectiveness.Furthermore,shape of the jet holes and jet and crossflow turbulence also affect the wall temperature distribution.Two rows of film arranged in different axial angles and staggered arrangement were proposed as new liquid film arrangement.Different radial angles have impact on the film cooling effectiveness in two row-jets cooled cases.The case of in-line and staggered arrangement are almost the same in the region before the second row of jets,but a staggered arrangement has a higher film cooling effectiveness from the second row of jets. 展开更多
关键词 liquid film cooling numerical study ROCKET TRANSCRITICAL semi-implicit method for pressure linked equation(SIMPLE) film cooling effectiveness
原文传递
Numerical study of wave disturbance in liquid cooling film 被引量:3
18
作者 S.R.Shine S.SunilKumar B.N.Suresh 《Propulsion and Power Research》 SCIE 2013年第2期107-118,共12页
Transient numerical simulations are carried out to investigate the liquid-gas interfacecharacteristics associated with liquid film cooling flows.A two-dimensional axisymmetricmulti-phase numerical model using finite v... Transient numerical simulations are carried out to investigate the liquid-gas interfacecharacteristics associated with liquid film cooling flows.A two-dimensional axisymmetricmulti-phase numerical model using finite volume formulation is developed.The model hasbeen validated against available experimental data for liquid-film cooling flows inside tubes.The model has been used to predict the interface characteristics for a variety of imposedparameters and momentum flux ratios under cold flow conditions wherein both the coolant andmainstream are maintained at the same temperature.Disturbance waves are observed at theliquid-gas interface for coolant flows above a critical value and after a finite distance from theinlet.The distance toward the wave inception point increased with the increase of momentumflux ratio.However,at higher momentum flux ratios,the properties of the disturbance wavesdid not vary significantly.The parameters related to the liquid-gas interface waves,namely,wave velocity,frequency,amplitude and wave length have been analyzed in detail.Analysisindicates that the liquid entrainment is due to the shearing of the disturbance wave crest. 展开更多
关键词 liquid film cooling liquid entrainment Interface disturbances Rocket combustion chamber Numerical analysis
原文传递
CUTTING REGULARITY AND DISCHARGE CHARACTERISTICS BY USING COMPOSITE COOLING LIQUID IN WIRE CUT ELECTRICAL DISCHARGE MACHINE WITH HIGH WIRE TRAVELING SPEED 被引量:11
19
作者 LIU Zhidong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期41-45,共5页
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte... The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid. 展开更多
关键词 Wire cut electrical discharge machine with high wire traveling speed Composite cooling liquid Discharge characteristic Cutting regularity
在线阅读 下载PDF
Numerical simulation of axial liquid film cooling in rocket combustor 被引量:1
20
作者 YANG Wei SUN Bing ZHENG Li-ming 《航空动力学报》 EI CAS CSCD 北大核心 2013年第2期459-465,共7页
Numerical simulation has been done for liquid film cooling in liquid rocket combustor.Multiple species of axial Navier-Stokes equations have been solved for liquid-film / hot-gas flow field,and k-εequations have been... Numerical simulation has been done for liquid film cooling in liquid rocket combustor.Multiple species of axial Navier-Stokes equations have been solved for liquid-film / hot-gas flow field,and k-εequations have been used for compressible turbulent flow.The results of the model agree well with the results of software FLUENT.The results show that :(1) Liquid film can decrease the wall heat flux and temperature effectively,and the cold border area formed by the film covers the whole combustor and nozzle wall.(2) The turbulent viscosity is higher than the physical viscosity,and its biggest value is in the border area of the convergent area in nozzle.The effect of turbulent flow on the whole simulation field can not be ignored.(3) The mass fraction of kerosene at the film inlet is 1,but it decreases along the nozzle wall and achieves its lowest value at the outlet.However,the mass fraction of kerosene near the wall is the biggest at any axial location. 展开更多
关键词 liquid rocket engine liquid film cooling heat flux numerical simulation turbulent flow
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部