A C*-metric algebra consists of a unital C*-algebra and a Leibniz Lip-norm on the C*-algebra. We show that if the Lip-norms concerned are lower semicontinuous, then any unital *-homomorphism from a C*-metric algebra t...A C*-metric algebra consists of a unital C*-algebra and a Leibniz Lip-norm on the C*-algebra. We show that if the Lip-norms concerned are lower semicontinuous, then any unital *-homomorphism from a C*-metric algebra to another one is necessarily Lipschitz. We come to the result that the free product of two unital completely Lipschitz contractive *-homomorphisms from upper related C*-metric algebras coming from *-filtrations to those which are lower related is a unital Lipschitz *-homomorphism.展开更多
In this paper, we study the stability of a class of conformable fractional-order systems using the Lyapunov function. We assume that the nonlinear part of the system satisfies the one-sided Lipschitz condition and the...In this paper, we study the stability of a class of conformable fractional-order systems using the Lyapunov function. We assume that the nonlinear part of the system satisfies the one-sided Lipschitz condition and the quadratic inner-bounded condition. We provide some sufficient conditions that ensure the asymptotic stability of the system. Furthermore, we present the construction of a feedback stabilizing controller for conformable fractional bilinear systems.展开更多
In this paper,the authors study the multilinear commutators generated by a class of multilinear singular integral operators with generalized kernels and Lipschitz functions.By establishing the sharp maximal estimates,...In this paper,the authors study the multilinear commutators generated by a class of multilinear singular integral operators with generalized kernels and Lipschitz functions.By establishing the sharp maximal estimates,the boundedness of this kind of multilinear commutators on product of weighted Lebesgue spaces can be obtained.展开更多
In the present paper,the modified Durrmeyer type Jakimovski-Leviatan operators are presented and their approximation properties are examined.It has shown that the new operators are the Gamma transform of the Jakimovsk...In the present paper,the modified Durrmeyer type Jakimovski-Leviatan operators are presented and their approximation properties are examined.It has shown that the new operators are the Gamma transform of the Jakimovski-Leviatan operators.The degree of approximation is given by the modulus of continuity.It has been stressed that,there are other operators having the same error estimation with the operators,arising from the Sz´asz-Durrmeyer operators.Then the degree of global approximation is obtained in a special Lipschitz type function space.Further,a Voronovskaja type asymptotic formula and Gr¨uss-Voronovskaja type theorem are given.The approximation with these operators is visualized with the help of error tables and graphical examples.展开更多
基金supported by the Shanghai Leading Academic Discipline Project (Project No. B407)National Natural Science Foundation of China (Grant No. 10671068)
文摘A C*-metric algebra consists of a unital C*-algebra and a Leibniz Lip-norm on the C*-algebra. We show that if the Lip-norms concerned are lower semicontinuous, then any unital *-homomorphism from a C*-metric algebra to another one is necessarily Lipschitz. We come to the result that the free product of two unital completely Lipschitz contractive *-homomorphisms from upper related C*-metric algebras coming from *-filtrations to those which are lower related is a unital Lipschitz *-homomorphism.
文摘In this paper, we study the stability of a class of conformable fractional-order systems using the Lyapunov function. We assume that the nonlinear part of the system satisfies the one-sided Lipschitz condition and the quadratic inner-bounded condition. We provide some sufficient conditions that ensure the asymptotic stability of the system. Furthermore, we present the construction of a feedback stabilizing controller for conformable fractional bilinear systems.
基金Supported by the National Natural Science Foundation of China(11671397,11571160,12071052)the Yue Qi Young Scholar of China University of Mining and Technology(Beijing)。
文摘In this paper,the authors study the multilinear commutators generated by a class of multilinear singular integral operators with generalized kernels and Lipschitz functions.By establishing the sharp maximal estimates,the boundedness of this kind of multilinear commutators on product of weighted Lebesgue spaces can be obtained.
基金Supported by Fujian Provincial Natural Science Foundation of China(2024J01792)。
文摘In the present paper,the modified Durrmeyer type Jakimovski-Leviatan operators are presented and their approximation properties are examined.It has shown that the new operators are the Gamma transform of the Jakimovski-Leviatan operators.The degree of approximation is given by the modulus of continuity.It has been stressed that,there are other operators having the same error estimation with the operators,arising from the Sz´asz-Durrmeyer operators.Then the degree of global approximation is obtained in a special Lipschitz type function space.Further,a Voronovskaja type asymptotic formula and Gr¨uss-Voronovskaja type theorem are given.The approximation with these operators is visualized with the help of error tables and graphical examples.