期刊文献+
共找到133篇文章
< 1 2 7 >
每页显示 20 50 100
Sustainable Investment Forecasting of Power Grids Based on theDeep Restricted Boltzmann Machine Optimized by the Lion Algorithm 被引量:3
1
作者 Qian Wang Xiaolong Yang +1 位作者 Di Pu Yingying Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期269-286,共18页
This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution pric... This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution price reform(TDPR)and 5G station construction were comprehensively incorporated into the consideration of influencing factors,and the fuzzy threshold method was used to screen out critical influencing factors.Then,the LA was used to optimize the parameters of the DRBM model to improve the model’s prediction accuracy,and the model was trained with the selected influencing factors and investment.Finally,the LA-DRBM model was used to predict the investment of a power grid enterprise,and the final prediction result was obtained by modifying the initial result with the modifying factors.The LA-DRBMmodel compensates for the deficiency of the singlemodel,and greatly improves the investment prediction accuracy of the power grid.In this study,a power grid enterprise was taken as an example to carry out an empirical analysis to prove the validity of the model,and a comparison with the RBM,support vector machine(SVM),back propagation neural network(BPNN),and regression model was conducted to verify the superiority of the model.The conclusion indicates that the proposed model has a strong generalization ability and good robustness,is able to abstract the combination of low-level features into high-level features,and can improve the efficiency of the model’s calculations for investment prediction of power grid enterprises. 展开更多
关键词 lion algorithm deep restricted boltzmann machine fuzzy threshold method power grid investment forecasting
在线阅读 下载PDF
Hybrid Metaheuristic Lion and Fireffy Optimization Algorithm with Chaotic Map for Substitution S-Box Design
2
作者 Arkan Kh Shakr Sabonchi 《Journal of Information Hiding and Privacy Protection》 2024年第1期21-45,共25页
Substitution boxes(S-boxes)are key components of symmetrical cryptosystems,acting as nonlinear substitutionfunctions that hide the relationship between the encrypted text and input key.This confusion mechanism is vita... Substitution boxes(S-boxes)are key components of symmetrical cryptosystems,acting as nonlinear substitutionfunctions that hide the relationship between the encrypted text and input key.This confusion mechanism is vitalfor cryptographic security because it prevents attackers from intercepting the secret key by analyzing the encryptedtext.Therefore,the S-box design is essential for the robustness of cryptographic systems,especially for the dataencryption standard(DES)and advanced encryption standard(AES).This study focuses on the application of theffreffy algorithm(FA)and metaheuristic lion optimization algorithm(LOA),thereby proposing a hybrid approachcalled the metaheuristic lion ffreffy(ML-F)algorithm.FA,inspired by the blinking behavior of ffreffies,is a relativelynew calculation technique that is effective for various optimization problems.However,FA offen experiences earlyconvergence,limiting the ability to determine the global optimal solution in complex search areas.To address thisproblem,the ML-F algorithm was developed by combining the strengths of FA and LOA.This study identiffesa research gap in enhancing S-box nonlinearity and resistance to differential attacks,which the proposed ML-Faims to address.The main contributions of this paper are the enhanced cryptographic robustness of the S-boxesdeveloped with ML-F,consistently outperforming those generated by FA and other methodsregarding nonlinearityand overall cryptographic properties.The LOA,inspired by the social hunting behavior of lions,uses the collectiveintelligence of a pride of lions to explore and exploit the search space more effectively.The experimental analysis ofthisstudy focused on the main encryption criteria,namely,nonlinearity,the bit independence criterion(BIC),strictavalanche criterion(SAC),differential probability(DP),and maximum expected linear probability(MELP).Thesecriteria ensure that the S-boxes provide robust security against various cryptanalytic attacks.The ML-F algorithmconsistently surpassed the FA and other optimization algorithms in generating S-boxes with higher nonlinearityand better overall cryptographic properties.In case of ML-F-based S-boxes,the results indicated a better averagenonlinear score and more resistance against several cryptographic attacks for quite a number of criteria.Therefore,they were considered more reliable while dealing with secured encryption.The values generated by the ML-FS-boxes are near ideal in both SAC and BIC,indicating better diffusion properties and consequently,enhancedsecurity.The DP analysisfurthershowed that the ML-F-generated S-boxes are highly resistant to differential attacks,which is a crucial requirement for secure encryption systems. 展开更多
关键词 Fireffy algorithm substitution boxes CRYPTOLOGY lion optimization algorithm information security
在线阅读 下载PDF
Ant Lion Algorithm for Optimized Controller Gains for Power Quality Enrichment of Off-grid Wind Power Harnessing Units 被引量:2
3
作者 Kodakkal Amritha Veramalla Rajagopal +1 位作者 Kuthuri Narasimha Raju Sabha Raj Arya 《Chinese Journal of Electrical Engineering》 CSCD 2020年第3期85-97,共13页
The proposed system uses an algorithm that works on the admittance of the system,for estimating the reference values of generated currents for an off-grid wind power harnessing unit(WPHU).The controller controls the v... The proposed system uses an algorithm that works on the admittance of the system,for estimating the reference values of generated currents for an off-grid wind power harnessing unit(WPHU).The controller controls the voltage and maintains the frequency within the limits while working with both linear and nonlinear loads for varying wind speeds.The admittance algorithm is simple and easy to implement and works very efficiently to generate the triggering signals for the controller of the WPHU.The wind power harnessing unit comprising of a squirrel cage induction generator,a star-delta transformer,a battery storage system and the control unit are modeled using Matlab/Simulink R2019.An isolated transformer with a star-delta configuration connects the load and the generator circuit with the controller to reduce the dc bus voltage and mitigate current in the neutral line.The response of the system during the dynamic loading depends on the best possible compensator proportional-integral(PI)gains.The antlion optimization algorithm is compared with particle swarm optimization and grey wolf optimization and is found to have the advantages of good convergence,high efficiency and fast calculating speed.It is therefore used to extract the optimal values of frequency and voltage PI gains.The simulation results of the control algorithm for the WPHU are validated in a real-time environment in a dSpace1104 laboratory set up.This algorithm is proven to have a quick response,maintain the required frequency,suppress the current harmonics,regulate voltage,help in balancing the load and compensating for the neutral current. 展开更多
关键词 Wind power harnessing unit induction generator admittance based control algorithm ant lion optimization algorithm voltage and frequency control battery energy storage system
原文传递
Parallel discrete lion swarm optimization algorithm for solving traveling salesman problem 被引量:4
4
作者 ZHANG Daoqing JIANG Mingyan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期751-760,共10页
As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optim... As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time. 展开更多
关键词 discrete lion swarm optimization(DLSO)algorithm complete 2-opt(C2-opt)algorithm parallel discrete lion swarm optimization(PDLSO)algorithm traveling salesman problem(TSP)
在线阅读 下载PDF
LOA-RPL:Novel Energy-Efficient Routing Protocol for the Internet of Things Using Lion Optimization Algorithm to Maximize Network Lifetime
5
作者 Sankar Sennan Somula Ramasubbareddy +2 位作者 Anand Nayyar Yunyoung Nam Mohamed Abouhawwash 《Computers, Materials & Continua》 SCIE EI 2021年第10期351-371,共21页
Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a c... Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a clustering protocol,the selection of a cluster head(CH)plays a key role in prolonging the lifetime of a network.However,most cluster-based protocols,including routing protocols for low-power and lossy networks(RPLs),have used fuzzy logic and probabilistic approaches to select the CH node.Consequently,early battery depletion is produced near the sink.To overcome this issue,a lion optimization algorithm(LOA)for selecting CH in RPL is proposed in this study.LOA-RPL comprises three processes:cluster formation,CH selection,and route establishment.A cluster is formed using the Euclidean distance.CH selection is performed using LOA.Route establishment is implemented using residual energy information.An extensive simulation is conducted in the network simulator ns-3 on various parameters,such as network lifetime,power consumption,packet delivery ratio(PDR),and throughput.The performance of LOA-RPL is also compared with those of RPL,fuzzy rule-based energyefficient clustering and immune-inspired routing(FEEC-IIR),and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm(RISARPL).The performance evaluation metrics used in this study are network lifetime,power consumption,PDR,and throughput.The proposed LOARPL increases network lifetime by 20%and PDR by 5%–10%compared with RPL,FEEC-IIR,and RISA-RPL.LOA-RPL is also highly energy-efficient compared with other similar routing protocols. 展开更多
关键词 Internet of things cluster head clustering protocol optimization algorithm lion optimization algorithm network lifetime routing protocol wireless sensor networks energy consumption low-power and lossy networks
在线阅读 下载PDF
基于改进VMD及ConvNeXt的小电流接地系统单相接地故障选线方法 被引量:2
6
作者 张浩 张大海 +2 位作者 刘乃毓 吴奎忠 侍哲 《高电压技术》 北大核心 2025年第2期730-741,I0021,共13页
对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模... 对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模态分解算法,通过蚁狮算法自动寻优选取合适的分解次数和惩罚因子,计算分解得到的各分量的分布熵,将其中的噪声分量筛选去除,将其余有效分量进行线性重构得到降噪后的零序电流信号;其次,将经过降噪处理后的一维零序电流信号经格拉姆角场转换为二维图像,制备故障选线数据集;然后,引入预训练的ConvNeXt模型,根据该研究数据模型特征,在其已有权重基础上对模型参数进行对应微调,从而提高模型精度并形成最终的选线模型;最后引入绝对平均误差、均方根误差作为评价指标验证所提降噪算法有效性。分别在加入噪声与否的前提下,将所提模型与3种选线模型相比较。实验结果表明该模型的准确率最高、抗噪性方面更好,其中该研究算法准确率达到了99.82%并且在不同噪声条件下都能维持91%以上的准确率,高于其他选线模型,克服了传统故障选线方法准确率低、抗噪性差的问题。 展开更多
关键词 故障选线 蚁狮优化算法 变分模态分解 分布熵 格拉姆角场 Conv Ne Xt
原文传递
基于改进蚁狮算法的含分布式电源配电网无功优化
7
作者 张萍 张高帅 《计算机与数字工程》 2025年第3期643-647,共5页
论文提出了一种改进蚁狮算法来求解含分布式发电(Distributed Generation,DG)的配电网无功优化问题。在原始蚁狮算法(Ant Lion Algorithm)的基础上加入Cubic映射,利用混沌搜索遍历性、均匀性和确定性的特点,使用混沌搜索优化适应度较差... 论文提出了一种改进蚁狮算法来求解含分布式发电(Distributed Generation,DG)的配电网无功优化问题。在原始蚁狮算法(Ant Lion Algorithm)的基础上加入Cubic映射,利用混沌搜索遍历性、均匀性和确定性的特点,使用混沌搜索优化适应度较差的蚁狮,提高蚁狮的适应度,加快算的收敛速度,减小算法陷入局部最优的可能性;同时在蚂蚁随机游走的过程中,引入动态权重系数,提高种群的随机性以及局部收敛能力。使用Matlab软件对IEEE33节点配电系统进行仿真,仿真结果印证了改进算法的有效性。 展开更多
关键词 蚁狮算法 分布式电源 Cubic映射 动态权重系数
在线阅读 下载PDF
计及用户需求响应的电热综合能源系统博弈优化策略 被引量:1
8
作者 彭爽 杨仁增 何旺 《智能计算机与应用》 2025年第1期123-129,共7页
由于传统集中式优化方法难以揭示多主体之间的交互作用,电力企业和消费者间的利益博弈关系有待进一步研究,本文提出一种基于演化博弈的考虑需求响应电热综合能源系统双层协同优化模型。首先对含电热气综合能源系统的互动优化进行建模,... 由于传统集中式优化方法难以揭示多主体之间的交互作用,电力企业和消费者间的利益博弈关系有待进一步研究,本文提出一种基于演化博弈的考虑需求响应电热综合能源系统双层协同优化模型。首先对含电热气综合能源系统的互动优化进行建模,上层运营商将售能价格发给用户,下层用户群通过调节自身用能策略并提交给运营商,以及运营商针对用户响应程度的反馈,调节供能价格,两者都以自身收益的最大化为目标,直至双方实现博弈决策平衡。最后,以中国某实际工业园区为算例进行了研究,用双层协同优化模式——蚂蚁狮子优化算法和YALMIP+GUROBI优化包在MATLAB环境下实现求解,并论证了该运行方案,该方案将有助于改善综合能源体系中的社会福利。 展开更多
关键词 综合能源系统 需求响应 演化博弈 定价策略 蚁狮算法
在线阅读 下载PDF
基于变分模态分解和改进频率增强分解变压器的有色金属价格预测
9
作者 王瑞 宋琦 +1 位作者 刘文慧 摆玉龙 《西北师范大学学报(自然科学版)》 2025年第1期51-60,I0004,共11页
准确预测有色金属价格对于决策者、投资者和研究人员具有重要意义.为了提高预测精度,文中提出了一种新型混合预测模型,称为(EVMD-ICEEMDAN-RFEDformer,EIRF).首先,使用变分模态分解(variational mode decomposition,VMD)将原始价格分解... 准确预测有色金属价格对于决策者、投资者和研究人员具有重要意义.为了提高预测精度,文中提出了一种新型混合预测模型,称为(EVMD-ICEEMDAN-RFEDformer,EIRF).首先,使用变分模态分解(variational mode decomposition,VMD)将原始价格分解为多个分量,同时使用改进的蚁狮搜索算法(modified ant lion optimization,MALO)对VMD的两个参数进行优化.其次,采用改进的带有自适应噪声的完全集成经验模式分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)进一步分解VMD产生的残差序列,从中提取有价值的信息.然后将所有分解的子序列输入到改进的频率增强分解变压器(reinforced frequency enhanced decomposition transformer,RFEDformer)中.最后,合并RFEDformer的预测并得出最终结果.为了验证模型的可靠性,文中利用了伦敦金属交易所的锡、铜和镍价格数据制定了3个不同的实验,并与12个对比模型进行了比较.结果表明混合模型在3个数据集上都取得了良好的性能. 展开更多
关键词 有色金属价格预测 蚁狮优化算法 二次分解 RFEDformer模型 Sophia优化器 IKMSE损失函数
在线阅读 下载PDF
基于改进狮群算法的混合图像盲分离
10
作者 夏清雨 丁元明 +1 位作者 张然 杨阳 《计算机应用与软件》 北大核心 2025年第5期224-230,254,共8页
针对盲源分离传统独立分量分析方法存在分离性能不高的问题,该文提出一种基于改进狮群算法的盲源分离方法,并应用于图像盲分离中。该算法在原始狮群算法的基础上,结合蝴蝶算法较强的局部搜索能力和免疫浓度选择优秀的进化机制,并通过基... 针对盲源分离传统独立分量分析方法存在分离性能不高的问题,该文提出一种基于改进狮群算法的盲源分离方法,并应用于图像盲分离中。该算法在原始狮群算法的基础上,结合蝴蝶算法较强的局部搜索能力和免疫浓度选择优秀的进化机制,并通过基于矢量距的惯性权重调整算法的搜索平衡。算法分别以信号的负熵和峭度作为目标函数,通过求解目标函数,实现对混合信号的盲分离。仿真结果表明,所提算法可以有效地分离含噪混合图像,具有比对比算法更优异的分离性能,而且在基于峭度的目标函数下分离性能更好。 展开更多
关键词 盲源分离 独立分量分析 狮群算法 蝴蝶算法 免疫浓度选择 惯性权重
在线阅读 下载PDF
基于改进蚁狮算法优化BP的轴承故障诊断
11
作者 王妍 于浩文 +2 位作者 凌丹 梁恩豪 王新发 《计算机集成制造系统》 北大核心 2025年第4期1259-1271,共13页
为了准确高效地对滚动轴承的健康状态进行诊断,提出一种基于改进蚁狮优化(IALO)算法优化BP神经网络的滚动轴承故障诊断模型。在IALO算法中,采用变异算子,增强了种群的多样性;采用动态比例系数和非线性动态权重,平衡了迭代过程中不同时... 为了准确高效地对滚动轴承的健康状态进行诊断,提出一种基于改进蚁狮优化(IALO)算法优化BP神经网络的滚动轴承故障诊断模型。在IALO算法中,采用变异算子,增强了种群的多样性;采用动态比例系数和非线性动态权重,平衡了迭代过程中不同时期游走的权重,降低了算法陷入局部极值的可能性。基准函数测试结果表明,与其他算法相比,IALO算法具有更好的优化性能。另外,为了改善BP神经网络的分类性能,利用IALO算法优化BP神经网络的权值和阈值,构建滚动轴承故障诊断模型。帕德伯恩轴承数据集的实验结果表明,采用IALO算法优化后的BP模型具有较好的故障诊断性能。 展开更多
关键词 轴承故障诊断 蚁狮优化算法 动态比例系数 非线性动态权重 BP神经网络
在线阅读 下载PDF
考虑低频振荡工况的汽轮机调速控制方法
12
作者 郑纪敦 贺佳兵 +1 位作者 晏杰俊 赵昊 《计算机仿真》 2025年第7期356-360,共5页
由于稳定器GPSS的性能受参数配置影响显著,如果参数配置不合理会导致振荡问题,从而影响调速控制效果,为此提出一种低频振荡工况下汽轮机调速控制方法。通过数据标准化以及数据清洗的方式对原始的汽轮机低频振荡工况下的运行数据展开预处... 由于稳定器GPSS的性能受参数配置影响显著,如果参数配置不合理会导致振荡问题,从而影响调速控制效果,为此提出一种低频振荡工况下汽轮机调速控制方法。通过数据标准化以及数据清洗的方式对原始的汽轮机低频振荡工况下的运行数据展开预处理,确保数据的连续性和合理性;通过模拟分析评估汽轮机本身功率扰动和调速器扰动对低频振荡的影响,确定了主要扰动源为汽轮机本身的功率扰动;设计一种针对于主要扰动源的汽轮机调速控制模型,并引入稳定器(GPSS)提升控制稳定性和性能,采用改进蚁狮(ALO)算法精确配置GPSS参数,以提升系统稳定性,避免不合适参数配置造成的负面影响,以此达到最优的控制结果。仿真结果表明,所提方法控制下功率波动较小,超调量几乎为0%,说明其控制效果较好,能够保证系统的稳定运行。 展开更多
关键词 扰动分析 调速控制模型 稳定器 改进蚁狮算法
在线阅读 下载PDF
蚁狮优化算法综述
13
作者 李承泽 李庚松 +1 位作者 刘艺 刘坤 《计算机仿真》 2025年第6期16-24,共9页
优化问题广泛存在于现实需求中,通常难以在多项式时间内获得精确解,采用进化算法搜索近似解是解决此类问题的主要方法。蚁狮优化是近年提出的一种新型进化算法。方法模拟蚁狮诱捕蚂蚁的觅食行为,主要步骤包括蚂蚁随机游走、蚁狮设置陷... 优化问题广泛存在于现实需求中,通常难以在多项式时间内获得精确解,采用进化算法搜索近似解是解决此类问题的主要方法。蚁狮优化是近年提出的一种新型进化算法。方法模拟蚁狮诱捕蚂蚁的觅食行为,主要步骤包括蚂蚁随机游走、蚁狮设置陷阱、蚂蚁滑入陷阱、蚁狮捕食蚂蚁与蚁狮重建陷阱,具有易于实现、扩展性强、灵活度高等优点,受到了广泛的研究与应用。介绍蚁狮优化算法的运行流程,将其改进方式分为策略优化方法和问题特定方法并进行总结,概述蚁狮优化算法的实际应用场景,展望未来的研究方向。 展开更多
关键词 蚁狮优化算法 进化算法 复杂优化 全局搜索 工程应用
在线阅读 下载PDF
基于蚁狮算法优化支持向量机的电力通信网故障诊断
14
作者 宋志强 解利冬 +3 位作者 王鸣阳 付丽娜 雷全学 崔利俊 《自动化技术与应用》 2025年第8期29-32,共4页
为了提高电力通信网故障诊断的准确性,以告警数据为输入量,以电力通信网故障类型为输出量,采用蚁狮算法对支持向量机进行参数寻优,建立基于蚁狮算法优化支持向量机的电力通信网故障诊断模型,采用电力通信网故障数据进行仿真分析,并与贝... 为了提高电力通信网故障诊断的准确性,以告警数据为输入量,以电力通信网故障类型为输出量,采用蚁狮算法对支持向量机进行参数寻优,建立基于蚁狮算法优化支持向量机的电力通信网故障诊断模型,采用电力通信网故障数据进行仿真分析,并与贝叶斯算法和卷积神经网络算法对比,结果表明,所提ALO-SVM电力通信网故障诊断正确率高达98%,高于其他两种算法,验证了所提方法的正确性和实用性。 展开更多
关键词 电力通信网 故障诊断 蚁狮优化算法 支持向量机
在线阅读 下载PDF
基于Kriging模型的参数不确定性模型修正
15
作者 许泽伟 《机械制造与自动化》 2025年第2期196-200,232,共6页
提出一种不确定性模型修正方法对结构中参数和响应的概率分布情况进行准确估计,使得模型修正更具有实际意义。采用拉丁超立方抽样方法对参数统计矩(均值、标准差)进行抽样获取样本点,利用多项式混沌展开模型快速计算响应统计矩的优势对... 提出一种不确定性模型修正方法对结构中参数和响应的概率分布情况进行准确估计,使得模型修正更具有实际意义。采用拉丁超立方抽样方法对参数统计矩(均值、标准差)进行抽样获取样本点,利用多项式混沌展开模型快速计算响应统计矩的优势对每一组样本点输出响应统计矩进行计算。以参数的统计矩为输入,结构响应统计矩为输出构建kriging模型,建立描述参数不确定性与响应不确定性之间的函数关系式。以kriging模型输出与实测数据差为目标函数,使用蚁狮算法进行迭代优化寻求最佳解。该方法通过3自由度弹簧质量块系统和三维桁架进行验证,所得响应统计矩接近实测数据,验证了方法的可行性。 展开更多
关键词 不确定性模型修正 多项式混沌展开 KRIGING模型 参数统计矩 蚁狮优化算法
在线阅读 下载PDF
基于ILSO-BP神经网络的数控机床主轴热误差建模
16
作者 薛东 袁鑫 +1 位作者 王新科 刘宏伟 《湖北文理学院学报》 2025年第2期23-28,共6页
为提高数控机床加工精度,以佳时特S7H型数控机床主轴系统为研究对象,构建基于改进狮群算法(ILSO)优化的BP神经网络热误差模型。文章利用基于遗传算法改进的K-means聚类分析和相关分析法,将温度测点从10个减小到5个;结合ILSO算法和BP神... 为提高数控机床加工精度,以佳时特S7H型数控机床主轴系统为研究对象,构建基于改进狮群算法(ILSO)优化的BP神经网络热误差模型。文章利用基于遗传算法改进的K-means聚类分析和相关分析法,将温度测点从10个减小到5个;结合ILSO算法和BP神经网络算法,在主轴Z向建立ILSO-BP模型。与传统的BP神经网络和LSSVM模型进行对比实验,结果表明:ILSO-BP模型具有精度高和鲁棒性强等优点。 展开更多
关键词 数控机床 主轴热误差 BP神经网络 狮群优化算法
在线阅读 下载PDF
基于LSO-GRU-ECM的分布式新能源聚类等值建模方法
17
作者 李新 董镝 +4 位作者 胡志鹏 金向朝 范心明 曾庆辉 黄天明 《能源与环保》 2025年第7期123-131,共9页
分布式新能源集群等值建模是研究分布式新能源并网相关问题的基础,但现有基于聚类算法的分布式新能源等值模型无法高精度拟合其动态特性,且泛化能力差。针对上述问题,以分布式光伏为例,提出一种基于狮群优化算法—门控循环神经网络—误... 分布式新能源集群等值建模是研究分布式新能源并网相关问题的基础,但现有基于聚类算法的分布式新能源等值模型无法高精度拟合其动态特性,且泛化能力差。针对上述问题,以分布式光伏为例,提出一种基于狮群优化算法—门控循环神经网络—误差校正模型(LSO-GRU-ECM)的分布式光伏聚类等值建模方法。首先,对分布式光伏集群采用改进的K-means算法和容量加权法进行聚类分群,构建分布式光伏聚类等值模型;其次,基于分布式光伏详细模型和聚类等值模型的动态响应误差构建ECM;然后,利用LSO优化GRU网络超参数,训练得到误差校正模型,将网络的输出加法补偿给聚类等值模型;最后,在PSCAD和MATLAB平台进行联合仿真,对比分析详细模型、聚类等值模型和本文所提模型,结果表明所提模型具有高精度、低耗时优点,验证了模型的有效性。 展开更多
关键词 分布式光伏 等值建模 误差校正模型 门控循环单元 狮群优化算法
在线阅读 下载PDF
A novel approach for speaker diarization system using TMFCC parameterization and Lion optimization 被引量:1
18
作者 V.Subba Ramaiah R.Rajeswara Rao 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第11期2649-2663,共15页
In audio stream containing multiple speakers, speaker diarization aids in ascertaining "who speak when". This is an unsupervised task as there is no prior information about the speakers. It labels the speech... In audio stream containing multiple speakers, speaker diarization aids in ascertaining "who speak when". This is an unsupervised task as there is no prior information about the speakers. It labels the speech signal conforming to the identity of the speaker, namely, input audio stream is partitioned into homogeneous segments. In this work, we present a novel speaker diarization system using the Tangent weighted Mel frequency cepstral coefficient(TMFCC) as the feature parameter and Lion algorithm for the clustering of the voice activity detected audio streams into particular speaker groups. Thus the two main tasks of the speaker indexing, i.e., speaker segmentation and speaker clustering, are improved. The TMFCC makes use of the low energy frame as well as the high energy frame with more effect, improving the performance of the proposed system. The experiments using the audio signal from the ELSDSR corpus datasets having three speakers, four speakers and five speakers are analyzed for the proposed system. The evaluation of the proposed speaker diarization system based on the tracking distance, tracking time as the evaluation metrics is done and the experimental results show that the speaker diarization system with the TMFCC parameterization and Lion based clustering is found to be superior over existing diarization systems with 95% tracking accuracy. 展开更多
关键词 SPEAKER diarization Mel FREQUENCY cepstral COEFFICIENT i-vector EXTRACTION lion algorithm
在线阅读 下载PDF
基于XALO-SVM的同步电机转子绕组匝间短路故障诊断方法 被引量:6
19
作者 付强 《黑龙江科技大学学报》 CAS 2024年第1期125-131,共7页
为提高动态绕组匝间短路故障的检测能力,提出了一种新的同步电机转子绕组匝间短路早期故障检测方法,通过分析同步电机转子数据,结合灰色关联度和主成分分析方法,构建了蚁狮算法与支持向量机的模型,提取关键故障数据作为支持向量机模型... 为提高动态绕组匝间短路故障的检测能力,提出了一种新的同步电机转子绕组匝间短路早期故障检测方法,通过分析同步电机转子数据,结合灰色关联度和主成分分析方法,构建了蚁狮算法与支持向量机的模型,提取关键故障数据作为支持向量机模型的输入变量,使用改进的蚁狮算法来优化支持向量机算法的关键参数,通过故障数据验证故障诊断模型。结果表明,基于XALO-SVM的故障诊断模型诊断精度可达97%以上,同时也缩短了诊断时间。 展开更多
关键词 同步电机 蚁狮算法 支持向量机 故障诊断
在线阅读 下载PDF
Two-Stage Planning of Distributed Power Supply and Energy Storage Capacity Considering Hierarchical Partition Control of Distribution Network with Source-Load-Storage 被引量:2
20
作者 Junhui Li Yuqing Zhang +4 位作者 Can Chen Xiaoxiao Wang Yinchi Shao Xingxu Zhu Cuiping Li 《Energy Engineering》 EI 2024年第9期2389-2408,共20页
Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the ... Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning. 展开更多
关键词 Zoning control two-stage planning site selection and capacity determination optimized scheduling improved ant lion algorithm
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部