This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution pric...This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution price reform(TDPR)and 5G station construction were comprehensively incorporated into the consideration of influencing factors,and the fuzzy threshold method was used to screen out critical influencing factors.Then,the LA was used to optimize the parameters of the DRBM model to improve the model’s prediction accuracy,and the model was trained with the selected influencing factors and investment.Finally,the LA-DRBM model was used to predict the investment of a power grid enterprise,and the final prediction result was obtained by modifying the initial result with the modifying factors.The LA-DRBMmodel compensates for the deficiency of the singlemodel,and greatly improves the investment prediction accuracy of the power grid.In this study,a power grid enterprise was taken as an example to carry out an empirical analysis to prove the validity of the model,and a comparison with the RBM,support vector machine(SVM),back propagation neural network(BPNN),and regression model was conducted to verify the superiority of the model.The conclusion indicates that the proposed model has a strong generalization ability and good robustness,is able to abstract the combination of low-level features into high-level features,and can improve the efficiency of the model’s calculations for investment prediction of power grid enterprises.展开更多
Substitution boxes(S-boxes)are key components of symmetrical cryptosystems,acting as nonlinear substitutionfunctions that hide the relationship between the encrypted text and input key.This confusion mechanism is vita...Substitution boxes(S-boxes)are key components of symmetrical cryptosystems,acting as nonlinear substitutionfunctions that hide the relationship between the encrypted text and input key.This confusion mechanism is vitalfor cryptographic security because it prevents attackers from intercepting the secret key by analyzing the encryptedtext.Therefore,the S-box design is essential for the robustness of cryptographic systems,especially for the dataencryption standard(DES)and advanced encryption standard(AES).This study focuses on the application of theffreffy algorithm(FA)and metaheuristic lion optimization algorithm(LOA),thereby proposing a hybrid approachcalled the metaheuristic lion ffreffy(ML-F)algorithm.FA,inspired by the blinking behavior of ffreffies,is a relativelynew calculation technique that is effective for various optimization problems.However,FA offen experiences earlyconvergence,limiting the ability to determine the global optimal solution in complex search areas.To address thisproblem,the ML-F algorithm was developed by combining the strengths of FA and LOA.This study identiffesa research gap in enhancing S-box nonlinearity and resistance to differential attacks,which the proposed ML-Faims to address.The main contributions of this paper are the enhanced cryptographic robustness of the S-boxesdeveloped with ML-F,consistently outperforming those generated by FA and other methodsregarding nonlinearityand overall cryptographic properties.The LOA,inspired by the social hunting behavior of lions,uses the collectiveintelligence of a pride of lions to explore and exploit the search space more effectively.The experimental analysis ofthisstudy focused on the main encryption criteria,namely,nonlinearity,the bit independence criterion(BIC),strictavalanche criterion(SAC),differential probability(DP),and maximum expected linear probability(MELP).Thesecriteria ensure that the S-boxes provide robust security against various cryptanalytic attacks.The ML-F algorithmconsistently surpassed the FA and other optimization algorithms in generating S-boxes with higher nonlinearityand better overall cryptographic properties.In case of ML-F-based S-boxes,the results indicated a better averagenonlinear score and more resistance against several cryptographic attacks for quite a number of criteria.Therefore,they were considered more reliable while dealing with secured encryption.The values generated by the ML-FS-boxes are near ideal in both SAC and BIC,indicating better diffusion properties and consequently,enhancedsecurity.The DP analysisfurthershowed that the ML-F-generated S-boxes are highly resistant to differential attacks,which is a crucial requirement for secure encryption systems.展开更多
The proposed system uses an algorithm that works on the admittance of the system,for estimating the reference values of generated currents for an off-grid wind power harnessing unit(WPHU).The controller controls the v...The proposed system uses an algorithm that works on the admittance of the system,for estimating the reference values of generated currents for an off-grid wind power harnessing unit(WPHU).The controller controls the voltage and maintains the frequency within the limits while working with both linear and nonlinear loads for varying wind speeds.The admittance algorithm is simple and easy to implement and works very efficiently to generate the triggering signals for the controller of the WPHU.The wind power harnessing unit comprising of a squirrel cage induction generator,a star-delta transformer,a battery storage system and the control unit are modeled using Matlab/Simulink R2019.An isolated transformer with a star-delta configuration connects the load and the generator circuit with the controller to reduce the dc bus voltage and mitigate current in the neutral line.The response of the system during the dynamic loading depends on the best possible compensator proportional-integral(PI)gains.The antlion optimization algorithm is compared with particle swarm optimization and grey wolf optimization and is found to have the advantages of good convergence,high efficiency and fast calculating speed.It is therefore used to extract the optimal values of frequency and voltage PI gains.The simulation results of the control algorithm for the WPHU are validated in a real-time environment in a dSpace1104 laboratory set up.This algorithm is proven to have a quick response,maintain the required frequency,suppress the current harmonics,regulate voltage,help in balancing the load and compensating for the neutral current.展开更多
As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optim...As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time.展开更多
Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a c...Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a clustering protocol,the selection of a cluster head(CH)plays a key role in prolonging the lifetime of a network.However,most cluster-based protocols,including routing protocols for low-power and lossy networks(RPLs),have used fuzzy logic and probabilistic approaches to select the CH node.Consequently,early battery depletion is produced near the sink.To overcome this issue,a lion optimization algorithm(LOA)for selecting CH in RPL is proposed in this study.LOA-RPL comprises three processes:cluster formation,CH selection,and route establishment.A cluster is formed using the Euclidean distance.CH selection is performed using LOA.Route establishment is implemented using residual energy information.An extensive simulation is conducted in the network simulator ns-3 on various parameters,such as network lifetime,power consumption,packet delivery ratio(PDR),and throughput.The performance of LOA-RPL is also compared with those of RPL,fuzzy rule-based energyefficient clustering and immune-inspired routing(FEEC-IIR),and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm(RISARPL).The performance evaluation metrics used in this study are network lifetime,power consumption,PDR,and throughput.The proposed LOARPL increases network lifetime by 20%and PDR by 5%–10%compared with RPL,FEEC-IIR,and RISA-RPL.LOA-RPL is also highly energy-efficient compared with other similar routing protocols.展开更多
对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模...对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模态分解算法,通过蚁狮算法自动寻优选取合适的分解次数和惩罚因子,计算分解得到的各分量的分布熵,将其中的噪声分量筛选去除,将其余有效分量进行线性重构得到降噪后的零序电流信号;其次,将经过降噪处理后的一维零序电流信号经格拉姆角场转换为二维图像,制备故障选线数据集;然后,引入预训练的ConvNeXt模型,根据该研究数据模型特征,在其已有权重基础上对模型参数进行对应微调,从而提高模型精度并形成最终的选线模型;最后引入绝对平均误差、均方根误差作为评价指标验证所提降噪算法有效性。分别在加入噪声与否的前提下,将所提模型与3种选线模型相比较。实验结果表明该模型的准确率最高、抗噪性方面更好,其中该研究算法准确率达到了99.82%并且在不同噪声条件下都能维持91%以上的准确率,高于其他选线模型,克服了传统故障选线方法准确率低、抗噪性差的问题。展开更多
In audio stream containing multiple speakers, speaker diarization aids in ascertaining "who speak when". This is an unsupervised task as there is no prior information about the speakers. It labels the speech...In audio stream containing multiple speakers, speaker diarization aids in ascertaining "who speak when". This is an unsupervised task as there is no prior information about the speakers. It labels the speech signal conforming to the identity of the speaker, namely, input audio stream is partitioned into homogeneous segments. In this work, we present a novel speaker diarization system using the Tangent weighted Mel frequency cepstral coefficient(TMFCC) as the feature parameter and Lion algorithm for the clustering of the voice activity detected audio streams into particular speaker groups. Thus the two main tasks of the speaker indexing, i.e., speaker segmentation and speaker clustering, are improved. The TMFCC makes use of the low energy frame as well as the high energy frame with more effect, improving the performance of the proposed system. The experiments using the audio signal from the ELSDSR corpus datasets having three speakers, four speakers and five speakers are analyzed for the proposed system. The evaluation of the proposed speaker diarization system based on the tracking distance, tracking time as the evaluation metrics is done and the experimental results show that the speaker diarization system with the TMFCC parameterization and Lion based clustering is found to be superior over existing diarization systems with 95% tracking accuracy.展开更多
Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the ...Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning.展开更多
基金the National Key Research and Development Program of China(Grant No.2020YFB1707804)the 2018 Key Projects of Philosophy and Social Sciences Research(Grant No.18JZD032)Natural Science Foundation of Hebei Province(Grant No.G2020403008).
文摘This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution price reform(TDPR)and 5G station construction were comprehensively incorporated into the consideration of influencing factors,and the fuzzy threshold method was used to screen out critical influencing factors.Then,the LA was used to optimize the parameters of the DRBM model to improve the model’s prediction accuracy,and the model was trained with the selected influencing factors and investment.Finally,the LA-DRBM model was used to predict the investment of a power grid enterprise,and the final prediction result was obtained by modifying the initial result with the modifying factors.The LA-DRBMmodel compensates for the deficiency of the singlemodel,and greatly improves the investment prediction accuracy of the power grid.In this study,a power grid enterprise was taken as an example to carry out an empirical analysis to prove the validity of the model,and a comparison with the RBM,support vector machine(SVM),back propagation neural network(BPNN),and regression model was conducted to verify the superiority of the model.The conclusion indicates that the proposed model has a strong generalization ability and good robustness,is able to abstract the combination of low-level features into high-level features,and can improve the efficiency of the model’s calculations for investment prediction of power grid enterprises.
文摘Substitution boxes(S-boxes)are key components of symmetrical cryptosystems,acting as nonlinear substitutionfunctions that hide the relationship between the encrypted text and input key.This confusion mechanism is vitalfor cryptographic security because it prevents attackers from intercepting the secret key by analyzing the encryptedtext.Therefore,the S-box design is essential for the robustness of cryptographic systems,especially for the dataencryption standard(DES)and advanced encryption standard(AES).This study focuses on the application of theffreffy algorithm(FA)and metaheuristic lion optimization algorithm(LOA),thereby proposing a hybrid approachcalled the metaheuristic lion ffreffy(ML-F)algorithm.FA,inspired by the blinking behavior of ffreffies,is a relativelynew calculation technique that is effective for various optimization problems.However,FA offen experiences earlyconvergence,limiting the ability to determine the global optimal solution in complex search areas.To address thisproblem,the ML-F algorithm was developed by combining the strengths of FA and LOA.This study identiffesa research gap in enhancing S-box nonlinearity and resistance to differential attacks,which the proposed ML-Faims to address.The main contributions of this paper are the enhanced cryptographic robustness of the S-boxesdeveloped with ML-F,consistently outperforming those generated by FA and other methodsregarding nonlinearityand overall cryptographic properties.The LOA,inspired by the social hunting behavior of lions,uses the collectiveintelligence of a pride of lions to explore and exploit the search space more effectively.The experimental analysis ofthisstudy focused on the main encryption criteria,namely,nonlinearity,the bit independence criterion(BIC),strictavalanche criterion(SAC),differential probability(DP),and maximum expected linear probability(MELP).Thesecriteria ensure that the S-boxes provide robust security against various cryptanalytic attacks.The ML-F algorithmconsistently surpassed the FA and other optimization algorithms in generating S-boxes with higher nonlinearityand better overall cryptographic properties.In case of ML-F-based S-boxes,the results indicated a better averagenonlinear score and more resistance against several cryptographic attacks for quite a number of criteria.Therefore,they were considered more reliable while dealing with secured encryption.The values generated by the ML-FS-boxes are near ideal in both SAC and BIC,indicating better diffusion properties and consequently,enhancedsecurity.The DP analysisfurthershowed that the ML-F-generated S-boxes are highly resistant to differential attacks,which is a crucial requirement for secure encryption systems.
文摘The proposed system uses an algorithm that works on the admittance of the system,for estimating the reference values of generated currents for an off-grid wind power harnessing unit(WPHU).The controller controls the voltage and maintains the frequency within the limits while working with both linear and nonlinear loads for varying wind speeds.The admittance algorithm is simple and easy to implement and works very efficiently to generate the triggering signals for the controller of the WPHU.The wind power harnessing unit comprising of a squirrel cage induction generator,a star-delta transformer,a battery storage system and the control unit are modeled using Matlab/Simulink R2019.An isolated transformer with a star-delta configuration connects the load and the generator circuit with the controller to reduce the dc bus voltage and mitigate current in the neutral line.The response of the system during the dynamic loading depends on the best possible compensator proportional-integral(PI)gains.The antlion optimization algorithm is compared with particle swarm optimization and grey wolf optimization and is found to have the advantages of good convergence,high efficiency and fast calculating speed.It is therefore used to extract the optimal values of frequency and voltage PI gains.The simulation results of the control algorithm for the WPHU are validated in a real-time environment in a dSpace1104 laboratory set up.This algorithm is proven to have a quick response,maintain the required frequency,suppress the current harmonics,regulate voltage,help in balancing the load and compensating for the neutral current.
基金supported by the National Natural Science Foundation of China(61771293)the Key Project of Shangdong Province(2019JZZY010111)。
文摘As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time.
基金This research was supported by X-mind Corps program of National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(No.2019H1D8A1105622)the Soonchunhyang University Research Fund.
文摘Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a clustering protocol,the selection of a cluster head(CH)plays a key role in prolonging the lifetime of a network.However,most cluster-based protocols,including routing protocols for low-power and lossy networks(RPLs),have used fuzzy logic and probabilistic approaches to select the CH node.Consequently,early battery depletion is produced near the sink.To overcome this issue,a lion optimization algorithm(LOA)for selecting CH in RPL is proposed in this study.LOA-RPL comprises three processes:cluster formation,CH selection,and route establishment.A cluster is formed using the Euclidean distance.CH selection is performed using LOA.Route establishment is implemented using residual energy information.An extensive simulation is conducted in the network simulator ns-3 on various parameters,such as network lifetime,power consumption,packet delivery ratio(PDR),and throughput.The performance of LOA-RPL is also compared with those of RPL,fuzzy rule-based energyefficient clustering and immune-inspired routing(FEEC-IIR),and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm(RISARPL).The performance evaluation metrics used in this study are network lifetime,power consumption,PDR,and throughput.The proposed LOARPL increases network lifetime by 20%and PDR by 5%–10%compared with RPL,FEEC-IIR,and RISA-RPL.LOA-RPL is also highly energy-efficient compared with other similar routing protocols.
文摘对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模态分解算法,通过蚁狮算法自动寻优选取合适的分解次数和惩罚因子,计算分解得到的各分量的分布熵,将其中的噪声分量筛选去除,将其余有效分量进行线性重构得到降噪后的零序电流信号;其次,将经过降噪处理后的一维零序电流信号经格拉姆角场转换为二维图像,制备故障选线数据集;然后,引入预训练的ConvNeXt模型,根据该研究数据模型特征,在其已有权重基础上对模型参数进行对应微调,从而提高模型精度并形成最终的选线模型;最后引入绝对平均误差、均方根误差作为评价指标验证所提降噪算法有效性。分别在加入噪声与否的前提下,将所提模型与3种选线模型相比较。实验结果表明该模型的准确率最高、抗噪性方面更好,其中该研究算法准确率达到了99.82%并且在不同噪声条件下都能维持91%以上的准确率,高于其他选线模型,克服了传统故障选线方法准确率低、抗噪性差的问题。
文摘In audio stream containing multiple speakers, speaker diarization aids in ascertaining "who speak when". This is an unsupervised task as there is no prior information about the speakers. It labels the speech signal conforming to the identity of the speaker, namely, input audio stream is partitioned into homogeneous segments. In this work, we present a novel speaker diarization system using the Tangent weighted Mel frequency cepstral coefficient(TMFCC) as the feature parameter and Lion algorithm for the clustering of the voice activity detected audio streams into particular speaker groups. Thus the two main tasks of the speaker indexing, i.e., speaker segmentation and speaker clustering, are improved. The TMFCC makes use of the low energy frame as well as the high energy frame with more effect, improving the performance of the proposed system. The experiments using the audio signal from the ELSDSR corpus datasets having three speakers, four speakers and five speakers are analyzed for the proposed system. The evaluation of the proposed speaker diarization system based on the tracking distance, tracking time as the evaluation metrics is done and the experimental results show that the speaker diarization system with the TMFCC parameterization and Lion based clustering is found to be superior over existing diarization systems with 95% tracking accuracy.
基金supported by North China Electric Power Research Institute’s Self-Funded Science and Technology Project“Research on Distributed Energy Storage Optimal Configuration and Operation Control Technology for Photovoltaic Promotion in the Entire County”(KJZ2022049).
文摘Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning.