Based on drilling and logging data,as well as geological experiments,the geological characteristics and factors controlling high-yield and enrichment of hydrocarbons in ultra-deep clastic rocks in the Linhe Depression...Based on drilling and logging data,as well as geological experiments,the geological characteristics and factors controlling high-yield and enrichment of hydrocarbons in ultra-deep clastic rocks in the Linhe Depression,Hetao Basin,are studied.The results are obtained in four aspects.First,the inland saline lacustrine high-quality source rocks developed in the Paleogene in the Linhe Depression have the characteristics of early maturity,early expulsion,high hydrocarbon yield,and continuous and efficient hydrocarbon generation,providing an important resource basis for the formation of ultra-high pressure and high-yield reservoirs.Second,the weak compaction,early charging,and weak cementation for pore-preserving,together with the ultra-high pressure for pore-preserving and fracture expansion to improve the permeability,leads to the development of high-quality reservoirs with medium porosity(greater than 15%)and medium permeability(up to 226×10^(-3)μm^(2))in the ultra-deep strata(deeper than 6500 m),which represents a greatly expanded space for oil and gas exploration.Third,the Linhe Formation adjacent to the trough exhibits a low net-to-gross(NTG)and good reservoir-caprock assemblage,and it is overlaid by very thick high-quality mudstone caprock,which are conducive to the continuous and efficient hydrocarbon generation and pressurization and the formation of ultra-high pressure oil and gas reservoirs.Fourth,the most favorable targets for ultra-deep exploration are the zones adjacent to the hydrocarbon generating center of the Paleogene Linhe Formation and with good tectonic setting and structural traps,mainly including the Xinglong faulted structural zone and the Nalinhu faulted buried-hill zone.The significant breakthrough of ultra-deep oil and gas exploration in the Linhe Depression reveals the good potential of ultra-deep clastic rocks in this area,and provides valuable reference for oil and gas exploration of ultra-deep clastic rocks in other areas.展开更多
Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of...Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of deep to ultra-deep abnormally high porosity clastic rock reservoirs in the Oligocene Linhe Formation in the Hetao Basin.The reservoir space of the deep to ultra-deep clastic rock reservoirs in the Linhe Formation is mainly primary pores,and the coupling of three favorable diagenetic elements,namely the rock fabric with strong compaction resistance,weak thermal compaction diagenetic dynamic field,and diagenetic environment with weak fluid compaction-weak cementation,is conducive to the preservation of primary pores.The Linhe Formation clastic rocks have a superior preexisting material composition,with an average total content of 90%for quartz,feldspar,and rigid rock fragments,and strong resistance to compaction.The geothermal gradient in Linhe Depression in the range of(2.0–2.6)°C/100 m is low,and together with the burial history of long-term shallow burial and late rapid deep burial,it forms a weak thermal compaction diagenetic dynamic field environment.The diagenetic environment of the saline lake basin is characterized by weak fluid compaction.At the same time,the paleosalinity has zoning characteristics,and weak cementation in low salinity areas is conducive to the preservation of primary pores.The hydrodynamic conditions of sedimentation,salinity differentiation of ancient water in saline lake basins,and sand body thickness jointly control the distribution of high-quality reservoirs in the Linhe Formation.展开更多
Based on paleogeomorphology, drilling and seismic data, this paper systematically studies the structural and sedimentary evolution, source rock characteristics, reservoir characteristics and formation mechanism, hydro...Based on paleogeomorphology, drilling and seismic data, this paper systematically studies the structural and sedimentary evolution, source rock characteristics, reservoir characteristics and formation mechanism, hydrocarbon accumulation model and enrichment law in the Linhe Depression of the Hetao Basin, NW China. The Hetao Basin mainly experienced three stages of evolution, namely, weak extensional fault depression, strong extensional fault depression and strike-slip transformation, giving rise to four positive structural belts(Jilantai, Shabu, Nalinhu and Xinglong), which are favorable areas for oil and gas accumulation. The two main saline lacustrine source rocks, Lower Cretaceous Guyang Formation and Oligocene Linhe Formation, are characterized by high sulfur content, rich algae, early maturity, early expulsion, and wide oil generation window. The large structural transition belt in the intermountain area around the Hetao Basin controls the formation of large-scale braided river delta deposits, which are characterized by high quartz content(50%-76%), long-term shallow burial and weak compaction, low cement content, and good reservoir properties in delta front sandbody. The burial depth of the effective Paleogene reservoirs is predicted to reach 8000 m. Three hydrocarbon accumulation models, nose-uplift near sag, buried hill surrounding sag, fault nose near source rock, are constructed. The law of hydrocarbon accumulation in the Linhe Depression is finally clarified as follows: near-source around the depression is the foundation, high-quality thick reservoir is the premise, good tectonic setting and trap conditions are the key.展开更多
基金Supported by the China National Petroleum Corporation(CNPC)Project(2023ZZ14-01)。
文摘Based on drilling and logging data,as well as geological experiments,the geological characteristics and factors controlling high-yield and enrichment of hydrocarbons in ultra-deep clastic rocks in the Linhe Depression,Hetao Basin,are studied.The results are obtained in four aspects.First,the inland saline lacustrine high-quality source rocks developed in the Paleogene in the Linhe Depression have the characteristics of early maturity,early expulsion,high hydrocarbon yield,and continuous and efficient hydrocarbon generation,providing an important resource basis for the formation of ultra-high pressure and high-yield reservoirs.Second,the weak compaction,early charging,and weak cementation for pore-preserving,together with the ultra-high pressure for pore-preserving and fracture expansion to improve the permeability,leads to the development of high-quality reservoirs with medium porosity(greater than 15%)and medium permeability(up to 226×10^(-3)μm^(2))in the ultra-deep strata(deeper than 6500 m),which represents a greatly expanded space for oil and gas exploration.Third,the Linhe Formation adjacent to the trough exhibits a low net-to-gross(NTG)and good reservoir-caprock assemblage,and it is overlaid by very thick high-quality mudstone caprock,which are conducive to the continuous and efficient hydrocarbon generation and pressurization and the formation of ultra-high pressure oil and gas reservoirs.Fourth,the most favorable targets for ultra-deep exploration are the zones adjacent to the hydrocarbon generating center of the Paleogene Linhe Formation and with good tectonic setting and structural traps,mainly including the Xinglong faulted structural zone and the Nalinhu faulted buried-hill zone.The significant breakthrough of ultra-deep oil and gas exploration in the Linhe Depression reveals the good potential of ultra-deep clastic rocks in this area,and provides valuable reference for oil and gas exploration of ultra-deep clastic rocks in other areas.
基金Supported by the CNPC Science and Technology Project(2023ZZ022023ZZ14-01).
文摘Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of deep to ultra-deep abnormally high porosity clastic rock reservoirs in the Oligocene Linhe Formation in the Hetao Basin.The reservoir space of the deep to ultra-deep clastic rock reservoirs in the Linhe Formation is mainly primary pores,and the coupling of three favorable diagenetic elements,namely the rock fabric with strong compaction resistance,weak thermal compaction diagenetic dynamic field,and diagenetic environment with weak fluid compaction-weak cementation,is conducive to the preservation of primary pores.The Linhe Formation clastic rocks have a superior preexisting material composition,with an average total content of 90%for quartz,feldspar,and rigid rock fragments,and strong resistance to compaction.The geothermal gradient in Linhe Depression in the range of(2.0–2.6)°C/100 m is low,and together with the burial history of long-term shallow burial and late rapid deep burial,it forms a weak thermal compaction diagenetic dynamic field environment.The diagenetic environment of the saline lake basin is characterized by weak fluid compaction.At the same time,the paleosalinity has zoning characteristics,and weak cementation in low salinity areas is conducive to the preservation of primary pores.The hydrodynamic conditions of sedimentation,salinity differentiation of ancient water in saline lake basins,and sand body thickness jointly control the distribution of high-quality reservoirs in the Linhe Formation.
基金Supported by the PetroChina Key Science and Technology (2021DJ0703)。
文摘Based on paleogeomorphology, drilling and seismic data, this paper systematically studies the structural and sedimentary evolution, source rock characteristics, reservoir characteristics and formation mechanism, hydrocarbon accumulation model and enrichment law in the Linhe Depression of the Hetao Basin, NW China. The Hetao Basin mainly experienced three stages of evolution, namely, weak extensional fault depression, strong extensional fault depression and strike-slip transformation, giving rise to four positive structural belts(Jilantai, Shabu, Nalinhu and Xinglong), which are favorable areas for oil and gas accumulation. The two main saline lacustrine source rocks, Lower Cretaceous Guyang Formation and Oligocene Linhe Formation, are characterized by high sulfur content, rich algae, early maturity, early expulsion, and wide oil generation window. The large structural transition belt in the intermountain area around the Hetao Basin controls the formation of large-scale braided river delta deposits, which are characterized by high quartz content(50%-76%), long-term shallow burial and weak compaction, low cement content, and good reservoir properties in delta front sandbody. The burial depth of the effective Paleogene reservoirs is predicted to reach 8000 m. Three hydrocarbon accumulation models, nose-uplift near sag, buried hill surrounding sag, fault nose near source rock, are constructed. The law of hydrocarbon accumulation in the Linhe Depression is finally clarified as follows: near-source around the depression is the foundation, high-quality thick reservoir is the premise, good tectonic setting and trap conditions are the key.