An extension of 2-D assignment approach is proposed for measurement-to-target association for improving multiple targets vector miss distance measurement accuracy. When the multiple targets move so closely, the measur...An extension of 2-D assignment approach is proposed for measurement-to-target association for improving multiple targets vector miss distance measurement accuracy. When the multiple targets move so closely, the measurements can not be fully resolved due to finite resolution. The proposed method adopts an auction algorithm to compute the feasible measurement-to-target assignment with unresolved measurements for solving this 2-D assignment problem. Computer simulation results demonstrate the effectiveness and feasibility of this method.展开更多
A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the chara...A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the characteristic relationship between the gray level of each pixel and the average value of its neighborhood. When the threshold is not located at the obvious and deep valley of the histgram, genetic algorithm is devoted to the problem of selecting the appropriate threshold value. The experimental results indicate that the proposed method has good performance.展开更多
A convective and stratiform cloud classification method for weather radar is proposed based on the density-based spatial clustering of applications with noise(DBSCAN)algorithm.To identify convective and stratiform clo...A convective and stratiform cloud classification method for weather radar is proposed based on the density-based spatial clustering of applications with noise(DBSCAN)algorithm.To identify convective and stratiform clouds in different developmental phases,two-dimensional(2D)and three-dimensional(3D)models are proposed by applying reflectivity factors at 0.5°and at 0.5°,1.5°,and 2.4°elevation angles,respectively.According to the thresholds of the algorithm,which include echo intensity,the echo top height of 35 dBZ(ET),density threshold,andεneighborhood,cloud clusters can be marked into four types:deep-convective cloud(DCC),shallow-convective cloud(SCC),hybrid convective-stratiform cloud(HCS),and stratiform cloud(SFC)types.Each cloud cluster type is further identified as a core area and boundary area,which can provide more abundant cloud structure information.The algorithm is verified using the volume scan data observed with new-generation S-band weather radars in Nanjing,Xuzhou,and Qingdao.The results show that cloud clusters can be intuitively identified as core and boundary points,which change in area continuously during the process of convective evolution,by the improved DBSCAN algorithm.Therefore,the occurrence and disappearance of convective weather can be estimated in advance by observing the changes of the classification.Because density thresholds are different and multiple elevations are utilized in the 3D model,the identified echo types and areas are dissimilar between the 2D and 3D models.The 3D model identifies larger convective and stratiform clouds than the 2D model.However,the developing convective clouds of small areas at lower heights cannot be identified with the 3D model because they are covered by thick stratiform clouds.In addition,the 3D model can avoid the influence of the melting layer and better suggest convective clouds in the developmental stage.展开更多
With the obvious throughput shortage in traditional cellular radio networks,Device-to-Device(D2D)communications has gained a lot of attention to improve the utilization,capacity and channel performance of nextgenerati...With the obvious throughput shortage in traditional cellular radio networks,Device-to-Device(D2D)communications has gained a lot of attention to improve the utilization,capacity and channel performance of nextgeneration networks.In this paper,we study a joint consideration of power and channel allocation based on genetic algorithm as a promising direction to expand the overall network capacity for D2D underlaied cellular networks.The genetic based algorithm targets allocating more suitable channels to D2D users and finding the optimal transmit powers for all D2D links and cellular users efficiently,aiming to maximize the overall system throughput of D2D underlaied cellular network with minimum interference level,while satisfying the required quality of service QoS of each user.The simulation results show that our proposed approach has an advantage in terms of maximizing the overall system utilization than fixed,random,BAT algorithm(BA)and Particle Swarm Optimization(PSO)based power allocation schemes.展开更多
A scheme of investigating the intracellular metabolic fluxes in central metabolism of Saccharomyces cerevisiae based on isotope model and tracer experiment was developed. The metabolic model applied in this study incl...A scheme of investigating the intracellular metabolic fluxes in central metabolism of Saccharomyces cerevisiae based on isotope model and tracer experiment was developed. The metabolic model applied in this study includes the Embden-Meyerhof-Parnas pathway,the pentose phosphate pathway,the tricarboxylic acid cycle,CO2 anaplerotic reactions,ethanol and acetate formation,and pathways involved in amino acid synthesis. The approach of hybridized genetic algorithm combined with the sequential simplex technique was used to optimize a quadratic error function without the requirement of the information on the partial derivatives. The impact of some key pa-rameters on the algorithm was studied. This approach was proved to be rapid and numerically stable in the analysis of the central metabolism of S.cerevisiae.展开更多
Magnetotelluric sounding method based on the difference of the rock’s resistivity is an exploration method about doing research in earth’s resistivity and phase using the native electromagnetic field. The paper adop...Magnetotelluric sounding method based on the difference of the rock’s resistivity is an exploration method about doing research in earth’s resistivity and phase using the native electromagnetic field. The paper adopts 2D finite element method as the magnetotelluric forward method and calculates the total field by primary field (also named background field) plus secondary field. We can?get more accurate forward result through the finite element method and we can get the result effected by the dense degree of grid slightly by the total field. But the method is not effective?enough when the model is divided into relative big grid. When the frequency changes, program solves relevant equation separately. According to the feature of the algorithm, we apply MPI parallel method in the algorithm. Every process solves relevant equation. The account of frequency?that a process needs to solve in parallel computation is less than the account that the process?needs to solve in serial algorithm. We can see that the forward result is the same with the serial algorithm and proves the correctness of algorithm. We do statistics about the efficiency of the parallel algorithm. When the account of processes is from 2 to 8, the speedup is from 1.63 to 2.64. It proves the effectiveness of the parallel algorithm.展开更多
One-dimensional Mel-Frequency Cepstrum Coefficients (1D-MFCC) in conjunction with a power spectrum analysis method is usually used as a feature extraction in a speaker identification system. However, as this one dimen...One-dimensional Mel-Frequency Cepstrum Coefficients (1D-MFCC) in conjunction with a power spectrum analysis method is usually used as a feature extraction in a speaker identification system. However, as this one dimensional feature extraction subsystem shows low recognition rate for identifying an utterance speech signal under harsh noise conditions, we have developed a speaker identification system based on two-dimensional Bispectrum data that was theoretically more robust to the addition of Gaussian noise. As the processing sequence of ID-MFCC method could not be directly used for processing the two-dimensional Bispectrum data, in this paper we proposed a 2D-MFCC method as an extension of the 1D-MFCC method and the optimization of the 2D filter design using Genetic Algorithms. By using the 2D-MFCC method with the Bispectrum analysis method as the feature extraction technique, we then used Hidden Markov Model as the pattern classifier. In this paper, we have experimentally shows our developed methods for identifying an utterance speech signal buried with various levels of noise. Experimental result shows that the 2D-MFCC method without GA optimization has a comparable high recognition rate with that of 1D-MFCC method for utterance signal without noise addition. However, when the utterance signal is buried with Gaussian noises, the developed 2D-MFCC shows higher recognition capability, especially, when the 2D-MFCC optimized by Genetics Algorithms is utilized.展开更多
文摘An extension of 2-D assignment approach is proposed for measurement-to-target association for improving multiple targets vector miss distance measurement accuracy. When the multiple targets move so closely, the measurements can not be fully resolved due to finite resolution. The proposed method adopts an auction algorithm to compute the feasible measurement-to-target assignment with unresolved measurements for solving this 2-D assignment problem. Computer simulation results demonstrate the effectiveness and feasibility of this method.
基金This project was supported by Science and Technology Research Emphasis Fund of Ministry of Education(204010) .
文摘A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the characteristic relationship between the gray level of each pixel and the average value of its neighborhood. When the threshold is not located at the obvious and deep valley of the histgram, genetic algorithm is devoted to the problem of selecting the appropriate threshold value. The experimental results indicate that the proposed method has good performance.
基金funded by the Key-Area Research and Development Program of Guangdong Province(Grant No.2020B1111200001)the Key project of monitoring,early warning and prevention of major natural disasters of China(Grant No.2019YFC1510304)+1 种基金the S&T Program of Hebei(Grant No.19275408D)the Scientific Research Projects of Weather Modification in Northwest China(Grant No.RYSY201905).
文摘A convective and stratiform cloud classification method for weather radar is proposed based on the density-based spatial clustering of applications with noise(DBSCAN)algorithm.To identify convective and stratiform clouds in different developmental phases,two-dimensional(2D)and three-dimensional(3D)models are proposed by applying reflectivity factors at 0.5°and at 0.5°,1.5°,and 2.4°elevation angles,respectively.According to the thresholds of the algorithm,which include echo intensity,the echo top height of 35 dBZ(ET),density threshold,andεneighborhood,cloud clusters can be marked into four types:deep-convective cloud(DCC),shallow-convective cloud(SCC),hybrid convective-stratiform cloud(HCS),and stratiform cloud(SFC)types.Each cloud cluster type is further identified as a core area and boundary area,which can provide more abundant cloud structure information.The algorithm is verified using the volume scan data observed with new-generation S-band weather radars in Nanjing,Xuzhou,and Qingdao.The results show that cloud clusters can be intuitively identified as core and boundary points,which change in area continuously during the process of convective evolution,by the improved DBSCAN algorithm.Therefore,the occurrence and disappearance of convective weather can be estimated in advance by observing the changes of the classification.Because density thresholds are different and multiple elevations are utilized in the 3D model,the identified echo types and areas are dissimilar between the 2D and 3D models.The 3D model identifies larger convective and stratiform clouds than the 2D model.However,the developing convective clouds of small areas at lower heights cannot be identified with the 3D model because they are covered by thick stratiform clouds.In addition,the 3D model can avoid the influence of the melting layer and better suggest convective clouds in the developmental stage.
文摘With the obvious throughput shortage in traditional cellular radio networks,Device-to-Device(D2D)communications has gained a lot of attention to improve the utilization,capacity and channel performance of nextgeneration networks.In this paper,we study a joint consideration of power and channel allocation based on genetic algorithm as a promising direction to expand the overall network capacity for D2D underlaied cellular networks.The genetic based algorithm targets allocating more suitable channels to D2D users and finding the optimal transmit powers for all D2D links and cellular users efficiently,aiming to maximize the overall system throughput of D2D underlaied cellular network with minimum interference level,while satisfying the required quality of service QoS of each user.The simulation results show that our proposed approach has an advantage in terms of maximizing the overall system utilization than fixed,random,BAT algorithm(BA)and Particle Swarm Optimization(PSO)based power allocation schemes.
基金Supported by the National Natural Science Foundation of China (No.20276065)the Special Funds for Major State BasicResearch Program of China (973 Program, 2007CB707805).
文摘A scheme of investigating the intracellular metabolic fluxes in central metabolism of Saccharomyces cerevisiae based on isotope model and tracer experiment was developed. The metabolic model applied in this study includes the Embden-Meyerhof-Parnas pathway,the pentose phosphate pathway,the tricarboxylic acid cycle,CO2 anaplerotic reactions,ethanol and acetate formation,and pathways involved in amino acid synthesis. The approach of hybridized genetic algorithm combined with the sequential simplex technique was used to optimize a quadratic error function without the requirement of the information on the partial derivatives. The impact of some key pa-rameters on the algorithm was studied. This approach was proved to be rapid and numerically stable in the analysis of the central metabolism of S.cerevisiae.
文摘Magnetotelluric sounding method based on the difference of the rock’s resistivity is an exploration method about doing research in earth’s resistivity and phase using the native electromagnetic field. The paper adopts 2D finite element method as the magnetotelluric forward method and calculates the total field by primary field (also named background field) plus secondary field. We can?get more accurate forward result through the finite element method and we can get the result effected by the dense degree of grid slightly by the total field. But the method is not effective?enough when the model is divided into relative big grid. When the frequency changes, program solves relevant equation separately. According to the feature of the algorithm, we apply MPI parallel method in the algorithm. Every process solves relevant equation. The account of frequency?that a process needs to solve in parallel computation is less than the account that the process?needs to solve in serial algorithm. We can see that the forward result is the same with the serial algorithm and proves the correctness of algorithm. We do statistics about the efficiency of the parallel algorithm. When the account of processes is from 2 to 8, the speedup is from 1.63 to 2.64. It proves the effectiveness of the parallel algorithm.
文摘One-dimensional Mel-Frequency Cepstrum Coefficients (1D-MFCC) in conjunction with a power spectrum analysis method is usually used as a feature extraction in a speaker identification system. However, as this one dimensional feature extraction subsystem shows low recognition rate for identifying an utterance speech signal under harsh noise conditions, we have developed a speaker identification system based on two-dimensional Bispectrum data that was theoretically more robust to the addition of Gaussian noise. As the processing sequence of ID-MFCC method could not be directly used for processing the two-dimensional Bispectrum data, in this paper we proposed a 2D-MFCC method as an extension of the 1D-MFCC method and the optimization of the 2D filter design using Genetic Algorithms. By using the 2D-MFCC method with the Bispectrum analysis method as the feature extraction technique, we then used Hidden Markov Model as the pattern classifier. In this paper, we have experimentally shows our developed methods for identifying an utterance speech signal buried with various levels of noise. Experimental result shows that the 2D-MFCC method without GA optimization has a comparable high recognition rate with that of 1D-MFCC method for utterance signal without noise addition. However, when the utterance signal is buried with Gaussian noises, the developed 2D-MFCC shows higher recognition capability, especially, when the 2D-MFCC optimized by Genetics Algorithms is utilized.