期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
Chaotic Analysis and Control of a Two-Peak Discrete Chaotic System
1
作者 ZHANG Liang HAN Qin 《Wuhan University Journal of Natural Sciences》 2025年第3期276-282,共7页
The nonlinear dynamic characteristics of a two-peak discrete chaotic system are studied.Through the study of the nonlinear dy‐namic behavior of the system,it is found that with the change of the system parameters,the... The nonlinear dynamic characteristics of a two-peak discrete chaotic system are studied.Through the study of the nonlinear dy‐namic behavior of the system,it is found that with the change of the system parameters,the system starts from a chaotic state,and then goes through intermittent chaos,stable region,period-doubling bifurcation to a chaotic state again.The systems critical conditions and pro‐cess to generate intermittent chaos are analyzed.The feedback control method sets linear and nonlinear controllers for the system to control the chaos.By adjusting the value of control parameters,the intermittent chaos can be delayed or disappear,and the stability region and period-doubling bifurcation process of the system can be expanded.Both linear controllers and nonlinear controllers have the same control effect.The numerical simulation analysis verifies the correctness of the theoretical analysis. 展开更多
关键词 two-peak discrete chaotic system intermittent chaos linear controller nonlinear controller chaos control
原文传递
Reactive voltage support strategy for droop-controlled grid-forming converters based on LADRC
2
作者 Dejian Yang Zhijie Cao Chaoquan Li 《iEnergy》 2025年第4期259-268,共10页
To enhance the low-voltage ride-through(LVRT)capability of emerging power systems with increasing penetration of renewable energy while addressing issues such as the slow response speed of traditional proportional-int... To enhance the low-voltage ride-through(LVRT)capability of emerging power systems with increasing penetration of renewable energy while addressing issues such as the slow response speed of traditional proportional-integral(PI)control,high model accuracy requirements,and complex system parameter tuning,this paper proposes a droop-controlled converter reactive power support strategy based on first-order linear active disturbance rejection control(LADRC).First,a mathematical model of a droop-controlled grid-forming(GFM)converter is established.A model equivalence method is then proposed to transform the dynamic characteristics of the control loop into equivalent impedance parameters.Based on the equivalent impedance parameter model,the influencing factors of the converter terminal voltage and point of common coupling(PCC)voltage are derived.Next,a first-order linear active disturbance rejection control strategy is introduced into the traditional droop control framework,and the controller parameters are optimized via the bandwidth tuning method.Finally,a simulation model of the droop-controlled GFM converter based on the linear active disturbance rejection controller is constructed on the PSCAD/EMTDC platform,and through comparative experiments under typical grid fault conditions,the effectiveness of the proposed control strategy in improving the system fault ride-through capability and voltage support is verified. 展开更多
关键词 Grid-forming control linear active disturbance rejection control reactive power support low-voltage ride-through
在线阅读 下载PDF
Joint Probabilistic Scheduling and Resource Allocation for Wireless Networked Control Systems
3
作者 Meng Zheng Lei Zhang Wei Liang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期258-260,共3页
Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the... Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works. 展开更多
关键词 subsystem activation probability linear quadratic gaussian control cost number uplink repetitions wireless networked control systems joint probabilistic scheduling resource allocation method psra linear quadratic gaussian lqg G based activation probability subsystems
在线阅读 下载PDF
Water-Assisted Injection Molding System Based on Water Hydraulic Proportional Control Technique 被引量:5
4
作者 ZHOU Hua ZHANG Zengmeng +1 位作者 GAO Yuan'an YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第4期418-427,共10页
Water-assisted injection molding(WAIM), an innovative process to mold plastic parts with hollow sections, is characterized with intermittent, periodic process and large pressure and flow rate variation. Energy savin... Water-assisted injection molding(WAIM), an innovative process to mold plastic parts with hollow sections, is characterized with intermittent, periodic process and large pressure and flow rate variation. Energy savings and injection pressure control can not be .attained based on conventional valve control system. Moreover, the injection water can not be supplied directly by water hydraulic proportional control system. Poor efficiency and control performance are presented by current trial systems, which pressurize injection water by compressed air. In this paper, a novel water hydraulic system is developed applying an accumulator for energy saving. And a new differential pressure control method is proposed by using pressure cylinder and water hydraulic proportional pressure relief valve for back pressure control. Aiming at design of linear controller for injection water pressure regulation, a linear load model is approximately built through computational fluid dynamics(CFD) simulation on two-phase flow cavity filling process with variable temperature and viscosity, and a linear model of pressure control system is built with the load model and linearization of water hydraulic components. According to the simulation, model based feedback is brought forward to compensate the pressure decrease during accumulator discharge and eliminate the derivative element of the system. Meanwhile, the steady-state error can be reduced and the capacity of resisting disturbance can be enhanced, by closed-loop control of load pressure with integral compensation. Through the developed experimental system in the State Key Lab of Fluid Power Transmission and Control, Zhejiang University, China, the static characteristic of the water hydraulic proportional relief valve was tested and output pressure control of the system in Acrylonitrile Butadiene Styrene(ABS) parts molding experiments was also studied. The experiment results show that the dead band and hysteresis of the water hydraulic proportional pressure relief valve are large, but the control precision and linearity can be improved with feed-forward compensation. With the experimental results of injection water pressure control, the applicability of this WAIM system and the effect of its linear controller are verified. The novel proposed process of WAIM pressure control and study on characteristics of control system contribute to the application of water hydraulic proportional control and WAIM technology. 展开更多
关键词 water-assisted injection molding water hydraulics proportional pressure control linear control load characteristic
在线阅读 下载PDF
Trajectory linearization control of an aerospace vehicle based on RBF neural network 被引量:6
5
作者 Xue Yali Jiang Changsheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第4期799-805,共7页
An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The infl... An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The influence of unknown disturbances and uncertainties is reduced by RBFNN thanks to its approaching ability, and a robustifying itera is used to overcome the approximate error of RBFNN. The parameters adaptive adjusting laws are designed on the Lyapunov theory. The uniform ultimate boundedness of all signals of the composite closed-loop system is proved based on Lyapunov theory. Finally, the flight control system of an ASV is designed based on the proposed method. Simulation results demonstrate the effectiveness and robustness of the designed approach. 展开更多
关键词 adaptive control trajectory linearization control radial basis function neural network aerospace vehicle.
在线阅读 下载PDF
Quaternion-based Nonlinear Trajectory Tracking Control of a Quadrotor Unmanned Aerial Vehicle 被引量:4
6
作者 ZHA Changliu DING Xilun +1 位作者 YU Yushu WANG Xueqiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期77-92,共16页
At present, most controllers of quadrotor unmanned aerial vehicles(UAVs) use Euler angles to express attitude. These controllers suffer a singularity problem when the pitch angle is near 90°, which limits the m... At present, most controllers of quadrotor unmanned aerial vehicles(UAVs) use Euler angles to express attitude. These controllers suffer a singularity problem when the pitch angle is near 90°, which limits the maneuverability of the UAV. To overcome this problem, based on the quatemion attitude representation, a 6 degree of freedom(DOF) nonlinear controller of a quadrotor UAV is designed using the trajectory linearization control(TLC) method. The overall controller contains a position sub-controller and an attitude sub-controller. The two controllers regulate the translational and rotational motion of the UAV, respectively. The controller is improved by using the commanded value instead of the nominal value as the input of the inner control loop. The performance of controller is tested by simulation before and after the improvement, the results show that the improved controller is better. The proposed controller is also tested via numerical simulation and real flights and is compared with the traditional controller based on Euler angles. The test results confirm the feasibility and the robustness of the proposed nonlinear controller. The proposed controller can successfully solve the singularity problem that usually occurs in the current attitude control of UAV and it is easy to be realized. 展开更多
关键词 unmanned aerial vehicle QUATERNION nonlinear control trajectory linearization control SINGULARITY
在线阅读 下载PDF
A new reduction-based LQ control for dynamic systems with a slowly time-varying delay 被引量:5
7
作者 Masakazu Haraguchi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第4期529-537,共9页
Time delays in the feedback control often dete- riorate the control performance or even cause the instability of a dynamic system. This paper presents a control strategy for the dynamic system with a constant or a slo... Time delays in the feedback control often dete- riorate the control performance or even cause the instability of a dynamic system. This paper presents a control strategy for the dynamic system with a constant or a slowly time-varying input delay based on a transformation, which sire-plifies the time-delay system the relation is discussed for into a delay-free one. Firstly, two existing reduction-based linear quadratic controls. One is continuous and the other is discrete. By extending the relation, a new reduction-based control is then developed with a numerical algorithm presented for practical control implementation. The controller suggested by the proposed method has such a promising property that it can be used for the cases of different values of an input time delay without redesign of controller. This property provides the potential for stabilizing the dynamic system with a time-varying input delay. Consequently, the application of the proposed method to the dynamic system with a slowly time-varying delay is discussed. Finally, numerical simulations are given to show the efficacy and the applicability of the method. 展开更多
关键词 Time delay Time-varying delay State transformation System reduction Linear quadratic control
在线阅读 下载PDF
Research of robust adaptive trajectory linearization control based on T-S fuzzy system 被引量:2
8
作者 Jiang Changsheng Zhang Chunyu Zhu Liang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期537-545,共9页
A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertai... A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertainty are estimated by the T-S fuzzy system, and a robust adaptive control law is designed by the Lyapunov theory. Irrespective of whether the dimensions of the system and the rules of the fuzzy system are large or small, there is only one parameter adjusting on line. Uniformly ultimately boundedness of all signals of the composite closed-loop system are proved by theory analysis. Finally, a numerical example is studied based on the proposed method. The simulation results demonstrate the effectiveness and robustness of the control scheme. 展开更多
关键词 nonlinear system trajectory linearization control robust adaptive control T-S fuzzy system.
在线阅读 下载PDF
A nonlinear model reference adaptive inverse control algorithm with pre-compensator 被引量:2
9
作者 XIAO Bin YANG Tie-Jun LIU Zhi-Gang 《Journal of Marine Science and Application》 2005年第4期34-42,共9页
In this paper, the reduced-order modeling (ROM) technology and its corresponding linear theory are expanded from the linear dynamic system to the nonlinear one, and H∞ control theory is employed in the frequency do... In this paper, the reduced-order modeling (ROM) technology and its corresponding linear theory are expanded from the linear dynamic system to the nonlinear one, and H∞ control theory is employed in the frequency domain to design some nonlinear system' s pre-compensator in some special way. The adaptive model inverse control (AMIC)theory coping with nonlinear system is improved as well. Such is the model reference adaptive inverse control with pre-compensator (PCMRAIC). The aim of that algorithm is to construct a strategy of control as a whole. As a practical example of the application, the nunlerical simulation has been given on matlab software packages. The numerical result is given. The proposed strategy realizes the linearization control of nonlinear dynamic system. And it carries out a good performance to deal with the nonlinear system. 展开更多
关键词 ROM technology AMIC algorithm nonlinear system compensator in frequency domain linearization control.
在线阅读 下载PDF
A new hyperchaotic system and its linear feedback control 被引量:2
10
作者 蔡国梁 郑松 田立新 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期4039-4046,共8页
This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system, studies some of its basic dynamical properties, such as the hyperchaotic attractor... This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system, studies some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov exponents, bifurcation diagram and the hyperchaotic attractor evolving into periodic, quasi-periodic dynamical behaviours by varying parameter k. Furthermore, effective linear feedback control method is used to suppress hyperchaos to unstable equilibrium, periodic orbits and quasi-periodic orbits. Numerical simulations are presented to show these results. 展开更多
关键词 HYPERCHAOS linear feedback control Lyapunov exponents BIFURCATION
原文传递
Hybrid Predictive Control with Simple Linear Control Based Circulating Current Suppression for Modular Multilevel Converters 被引量:5
11
作者 Yuanxiang Sun Zhen Li Zhenbin Zhang 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第4期335-341,共7页
The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and compli... The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and complicate the heatsink design.This paper proposes a novel hybrid model predictive control method for MMCs.This method utilizes an indirect structure MPC and a sorting algorithm to implement current tracking and capacitor voltages balancing,considerably resulting in reduced calculation burden.In addition,different from the conventional MPC solutions,we add a simple proportional-integral(PI)controller to suppress circulating current through modifying the submodule(SM)inserted number,which is parallel to the MPC loop.This hybrid control solution combines both advantages of MPC and linear control,evidently resulting in improved performance of circulating current.Finally,the MATLAB/Simulink results of an 11-level MMC system verify the effectiveness of the proposed solution. 展开更多
关键词 Circulating current suppression hybrid predictive control linear control modular multilevel converters.
在线阅读 下载PDF
Nonlinear Control of Magnetically-geared Drive-trains 被引量:1
12
作者 Ryan Montague Chris Bingham 《International Journal of Automation and computing》 EI CSCD 2013年第4期319-326,共8页
The paper considers certain impedimental issues related to the use of magnetic gearbox and magnetic coupling technologies in high performance servo control systems. A prototype magnetic coupling is used as a basis for... The paper considers certain impedimental issues related to the use of magnetic gearbox and magnetic coupling technologies in high performance servo control systems. A prototype magnetic coupling is used as a basis for demonstrating that the underlying torque transfer characteristic is significantly nonlinear when transmitted torque approaches the maximum designed pull-out torque of the device. It is shown that linear controllers for speed control proportional plus integral (PI) and position control proportional plus derivative (PD) result in acceptable performance provided the magnetic coupling operates below 80 % of designed pull-out torque. To fully compensate for the inherent nonlinearity of the torque transfer characteristic, feedback linearizing control laws and state transformations are derived resulting in exactly linear input-output characteristic for position and speed control of magnetically-geared drive-trains. With the addition of state feedback, the closed-loop dynamics for both position and speed control of a magnetically-geared drive-train can be designed to satisfy the integral of time multiplied by absolute error (ITAE) optimized linear response for a step input. Outstanding results are demonstrated through simulation and experimental real-time implementation on a demonstrator magnetically-geared drive-train. 展开更多
关键词 Magnetic gears magnetic couplings linear control nonlinear control feedback linearization.
原文传递
Integrated guidance and control design of the suicide UCAV for terminal attack 被引量:2
13
作者 Huan Zhou Hui Zhao +1 位作者 Hanqiao Huang Xin Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第3期546-555,共10页
A novel integrated guidance and control (IGC) design method is proposed to solve problems of low control accuracy for a suicide unmanned combat aerial vehicle (UCAV) in the terminal attack stage. First of all, the IGC... A novel integrated guidance and control (IGC) design method is proposed to solve problems of low control accuracy for a suicide unmanned combat aerial vehicle (UCAV) in the terminal attack stage. First of all, the IGC system model of the UCAV is built based on the three-channel independent design idea, which reduces the difficulties of designing the controller. Then, IGC control laws are designed using the trajectory linearization control (TLC). A nonlinear disturbance observer (NDO) is introduced to the IGC controller to reject various uncertainties, such as the aerodynamic parameter perturbation and the measurement error interference. The stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the proposed IGC design method is verified in a terminal attack mission of the suicide UCAV. Finally, simulation results demonstrate the superiority and effectiveness in the aspects of guidance accuracy and system robustness. 展开更多
关键词 integrated guidance and control (IGC) unmanned combat aerial vehicle (UCAV) trajectory linearization control (TLC) terminal attack nonlinear disturbance observer (NDO)
在线阅读 下载PDF
A hybrid multi-degree-of-freedom vibration isolation platform for spacecrafts by the linear active disturbance rejection control 被引量:9
14
作者 Weichao CHI S.J.MA J.Q.SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第5期805-818,共14页
The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platf... The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation. 展开更多
关键词 hybrid vibration isolation Stewart platform linear active disturbance rejection control(LADRC) STABILITY ROBUSTNESS
在线阅读 下载PDF
Gain self-scheduled H_∞ control for morphing aircraft in the wing transition process based on an LPV model 被引量:45
15
作者 Yue Ting Wang Lixin Ai Junqiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期909-917,共9页
This article investigates gain self-scheduled H 1 robust control system design for a tailless fold- ing-wing morphing aircraft in the wing shape varying process. During the wing morphing phase, the aircraft's dynamic... This article investigates gain self-scheduled H 1 robust control system design for a tailless fold- ing-wing morphing aircraft in the wing shape varying process. During the wing morphing phase, the aircraft's dynamic response will be governed by time-varying aerodynamic forces and moments. Nonlinear dynamic equations of the morphing aircraft are linearized by using Jacobian linearization approach, and a linear parameter varying (LPV) model of the morphing aircraft in wing folding is obtained. A multi-loop controller for the morphing aircraft is formulated to guarantee stability for the wing shape transition process. The proposed controller uses a set of inner-loop gains to provide stability using classical techniques, whereas a gain self-scheduled H 1 outer-loop controller is devised to guarantee a specific level of robust stability and performance for the time-varying dynamics. The closed-loop simulations show that speed and altitude vary slightly during the whole wing folding process, and they converge rapidly after the process ends. This proves that the gain self-scheduled H 1 robust controller can guarantee a satisfactory dynamic performance for the morphing aircraft during the whole wing shape transition process. Finally, the flight control system's robustness for the wing folding process is verified according to uncertainties of the aerodynamic parameters in the nonlinear model. 展开更多
关键词 Gain self-scheduled H 1 robust control Linear parameter varying Morphing aircraft Wing transition
原文传递
Robust Control for Static Loading of Electro-hydraulic Load Simulator with Friction Compensation 被引量:22
16
作者 YAO Jianyong JIAO Zongxia YAO Bin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期954-962,共9页
Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness t... Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness test of aircraft actuation systems. The tracking performance of the static loading is studied in this paper. Firstly, the nonlinear mathematical models of the hydraulic load simulator are derived, and the feedback linearization method is employed to construct a feed-forward controller to improve the force tracking performance. Considering the effect of the friction, a LuGre model based friction compensation is synthesized, in which the unmeasurable state is estimated by a dual state observer via a controlled learning mechanism to guarantee that the estimation is bounded. The modeling errors are attenuated by a well-designed robust controller with a control accuracy measured by a design parameter. Employing the dual state observer is to capture the different effects of the unmeasured state and hence can improve the friction compensation accuracy. The tracking performance is summarized by a derived theorem. Experimental results are also obtained to verify the high performance nature of the proposed control strategy. 展开更多
关键词 electro-hydraulic load simulator robust control friction compensation feedback linearization LuGre model nonlinear control state estimation
原文传递
Non-fragile switching tracking control for a flexible air-breathing hypersonic vehicle based on polytopic LPV model 被引量:21
17
作者 Huang Yiqing Sun Changyin +1 位作者 Qian Chengshan Wang Li 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期948-959,共12页
This article proposes a linear parameter varying (LPV) switching tracking control scheme for a flexible air-breathing hypersonic vehicle (FAHV). First, a polytopic LPV model is constructed to represent the complex... This article proposes a linear parameter varying (LPV) switching tracking control scheme for a flexible air-breathing hypersonic vehicle (FAHV). First, a polytopic LPV model is constructed to represent the complex nonlinear longitudinal model of the FAHV by using Jacobian linearization and tensor-product (T-P) model transformation approach. Second, for less conservative controller design purpose, the flight envelope is divided into four sub-regions and a non-fragile LPV controller is designed for each parameter sub-region. These non-fragile LPV controllers are then switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a specified performance criterion. The desired non-fragile LPV switching controller is found by solving a convex constraint problem which can be efficiently solved using available linear matrix inequality (LMI) techniques, and robust stability analysis of the closed-loop FAHV system is verified based on multiple Lypapunov functions (MLFs). Finally, numerical simulations have demonstrated the effectiveness of the proposed approach. 展开更多
关键词 Hypersonic vehicles Linear parameter varying Non-fragile control Switching control Tracking control
原文传递
ROBUST CONTROL VIA STATE FEEDBACK FOR A CLASS OF UNCERTAIN BILINEAR SYSTEMS 被引量:1
18
作者 陈松林 朱祖慈 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第2期181-185,共5页
This paper is concerned with the problem of designing a stabilizing controller for a class of uncertain bilinear systems. The uncertainties in the systems must satisfy the matching condition and their bounds should be... This paper is concerned with the problem of designing a stabilizing controller for a class of uncertain bilinear systems. The uncertainties in the systems must satisfy the matching condition and their bounds should be known. The so-called improved approach for stability analysis of nonlinear system was used. Under some suitable assumptions a linear robust state feedback controller can be designed. At last, an illustrative example was demonstrated. 展开更多
关键词 Linear control systems STABILITY
在线阅读 下载PDF
New trajectory linearization control for nonlinear systems undergoing harmonic disturbance 被引量:1
19
作者 Zhu Liang Chen Li Jing Zhongliang Hu Shiqiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期571-576,共6页
This paper presents a new trajectory linearization control scheme for a class of nonlinear systems subject to harmonic disturbance. It is supposed that the frequency of the disturbance is known, but the amplitude and ... This paper presents a new trajectory linearization control scheme for a class of nonlinear systems subject to harmonic disturbance. It is supposed that the frequency of the disturbance is known, but the amplitude and the phase are unknown. A disturbance observer dynamics is constructed to estimate the harmonic disturbance, and then the estimation is used to implement a compensation control law to cancel the disturbance. By Lyapunov's direct method, a rigorous poof shows that the composite error of the closed-loop system can approach zero exponentially. Finally, the proposed method is illustrated by the application to control of an inverted pendulum. Compared with two existing methods, the proposed method demonstrates better performance in tracking error and response time. 展开更多
关键词 nonlinear control system harmonic disturbance trajectory linearization control
在线阅读 下载PDF
Temperature Compensation Algorithm for Hydraulic System Pressure Control 被引量:1
20
作者 Huien Gao Liang Chu +1 位作者 Jianhua Guo Dianbo Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期556-563,共8页
In this paper the control mechanism of solenoid valve is analyzed,which shows the solenoid valve control is actually the control of coil current.The response characteristic of coil current is related to coil inductanc... In this paper the control mechanism of solenoid valve is analyzed,which shows the solenoid valve control is actually the control of coil current.The response characteristic of coil current is related to coil inductance and resistance.The coil resistance is influenced greatly by the ambient temperature and the self-heating of coil,which affects the control precision of coil current.First,considering the heat dissipation mode of coil,the coil temperature model is established from the perspective of heat conduction,and a temperature compensation algorithm for hydraulic system pressure control is put forward.Then the hardware-in-the-loop testbed is set up by using the dSPACE platform,carrying out wheel cylinder pressurization tests with inlet valve fully opened at-40℃ and 20℃,and testing the actual pressure of wheel cylinder with the target pressures at-40℃ and 6 000 kPa/s(pressurization rate).The results show that the pressure control temperature compensation algorithm proposed in this paper accurately corrects the influence of resistance temperature drift on the response accuracy of wheel cylinder pressure.After the correction,the pressure difference is less than 500 kPa,which can meet the control accuracy requirements of solenoid valve,enriching the linear control characteristic of solenoid valve. 展开更多
关键词 braking energy recovery heat conduction temperature compensation linear pressure control rapid control prototype
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部