A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretizatio...A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.展开更多
Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-ve...Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-vector product,matrix-matrix product,the sum of two matrices,and the calculation of determinant and inverse matrix.We encode the matrix entries into the probability amplitudes of the pure initial states of senders.After applying proper unitary transformation to the complete quantum system,the desired result can be found in certain blocks of the receiver’s density matrix.These quantum protocols can be used as subroutines in other quantum schemes.Furthermore,we present an alternative quantum algorithm for solving linear systems of equations.展开更多
Variational quantum algorithms are promising methods with the greatest potential to achieve quantum advantage,widely employed in the era of noisy intermediate-scale quantum computing.This study presents an advanced va...Variational quantum algorithms are promising methods with the greatest potential to achieve quantum advantage,widely employed in the era of noisy intermediate-scale quantum computing.This study presents an advanced variational hybrid algorithm(EVQLSE)that leverages both quantum and classical computing paradigms to address the solution of linear equation systems.Initially,an innovative loss function is proposed,drawing inspiration from the similarity measure between two quantum states.This function exhibits a substantial improvement in computational complexity when benchmarked against the variational quantum linear solver.Subsequently,a specialized parameterized quantum circuit structure is presented for small-scale linear systems,which exhibits powerful expressive capabilities.Through rigorous numerical analysis,the expressiveness of this circuit structure is quantitatively assessed using a variational quantum regression algorithm,and it obtained the best score compared to the others.Moreover,the expansion in system size is accompanied by an increase in the number of parameters,placing considerable strain on the training process for the algorithm.To address this challenge,an optimization strategy known as quantum parameter sharing is introduced,which proficiently minimizes parameter volume while adhering to exacting precision standards.Finally,EVQLSE is successfully implemented on a quantum computing platform provided by IBM for the resolution of large-scale problems characterized by a dimensionality of 220.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremend...Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.展开更多
Dear Editor,This letter studies output consensus problem of heterogeneous linear multiagent systems over directed graphs. A novel adaptive dynamic event-triggered controller is presented based only on the feedback com...Dear Editor,This letter studies output consensus problem of heterogeneous linear multiagent systems over directed graphs. A novel adaptive dynamic event-triggered controller is presented based only on the feedback combination of the agent's own state and neighbors' output,which can achieve exponential output consensus through intermittent communication. The controller is obtained by solving two linear matrix equations, and Zeno behavior is excluded.展开更多
Wave shoaling,which involves an increase in wave amplitude due to changes in water depth,can damage shore-lines.To mitigate this damage,we propose using porous structures such as mangrove forests.In this study,we use ...Wave shoaling,which involves an increase in wave amplitude due to changes in water depth,can damage shore-lines.To mitigate this damage,we propose using porous structures such as mangrove forests.In this study,we use a mathematical model to examine how mangroves,acting as porous breakwater,can reduce wave shoaling amplitude.The shallow water equations are used as the governing equations and are modified to account for the presence of porous media.To measure the wave reduction generated by the porous media,the wave transmis-sion coefficient is estimated using analytical and numerical approaches.The separation of variables method and the staggered finite volume method are utilized for each approach,respectively.The numerical results are then validated against the previously obtained analytical solutions.We then vary the friction and porosity parame-ters-determined by the presence and extent of porous media,to evaluate their effectiveness in reducing wave shoaling.展开更多
Rocks will suffer different degree of damage under freeze-thaw(FT)cycles,which seriously threatens the long-term stability of rock engineering in cold regions.In order to study the mechanism of rock FT damage,energy c...Rocks will suffer different degree of damage under freeze-thaw(FT)cycles,which seriously threatens the long-term stability of rock engineering in cold regions.In order to study the mechanism of rock FT damage,energy calculation method and energy self-inhibition model are introduced to explore their energy characteristics in this paper.The applicability of the energy self-inhibition model was verified by combining the data of FT cycles and uniaxial compression tests of intact and pre-cracked sandstone samples,as well as published reference data.In addition,the energy evolution characteristics of FT damaged rocks were discussed accordingly.The results indicate that the energy self-inhibition model perfectly characterizes the energy accumulation characteristics of FT damaged rocks under uniaxial compression before the peak strength and the energy dissipation characteristics before microcrack unstable growth stage.Taking the FT damaged cyan sandstone sample as an example,it has gone through two stages dominated by energy dissipation mechanism and energy accumulation mechanism,and the energy rate curve of the pre-cracked sample shows a fall-rise phenomenon when approaching failure.Based on the published reference data,it was found that the peak total input energy and energy storage limit conform to an exponential FT decay model,with corresponding decay constants ranging from 0.0021 to 0.1370 and 0.0018 to 0.1945,respectively.Finally,a linear energy storage equation for FT damaged rocks was proposed,and its high reliability and applicability were verified by combining published reference data,the energy storage coefficient of different types of rocks ranged from 0.823 to 0.992,showing a negative exponential relationship with the initial UCS(uniaxial compressive strength).In summary,the mechanism by which FT weakens the mechanical properties of rocks has been revealed from an energy perspective in this paper,which can provide reference for related issues in cold regions.展开更多
In this article, we study the complex oscillation problems of entire solutions to homogeneous and nonhomogeneous linear difference equations, and obtain some relations of the exponent of convergence of zeros and the o...In this article, we study the complex oscillation problems of entire solutions to homogeneous and nonhomogeneous linear difference equations, and obtain some relations of the exponent of convergence of zeros and the order of growth of entire solutions to complex linear difference equations.展开更多
The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditio...The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditioning of the equations. Based on the singular value decomposition (SVD) of the coefficient matrix, an error based truncation algorithm is proposed in this paper. By rejection of selected small singular values, the influence of noise can be reduced. A simply-supported beam is used as a simulation example to compare the results to other methods. Illustrative numerical examples demonstrate the good efficiency and stability of the algorithm in the nondestructive identification of structural damage through modal data.展开更多
In this paper,we mainly investigate the dynamical properties of entire solutions of complex differential equations.With some conditions on coefficients,we prove that the set of common limiting directions of Julia sets...In this paper,we mainly investigate the dynamical properties of entire solutions of complex differential equations.With some conditions on coefficients,we prove that the set of common limiting directions of Julia sets of solutions,their derivatives and their primitives must have a definite range of measure.展开更多
In this paper, we mainly investigate entire solutions of complex differential equations with coefficients involving exponential functions, and obtain the dynamical properties of the solutions, their derivatives and pr...In this paper, we mainly investigate entire solutions of complex differential equations with coefficients involving exponential functions, and obtain the dynamical properties of the solutions, their derivatives and primitives. With some conditions on coefficients, for the solutions, their derivatives and their primitives, we consider the common limiting directions of Julia set and the existence of Baker wandering domain.展开更多
Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterativ...Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterative methods and provide a reference for further study and design. Finally, a new iterative method is designed named as the diverse relaxation parameter of the SOR method which, in particular, demonstrates the geometric characteristics. Many examples prove that the method is quite effective.展开更多
In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-m...In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.展开更多
In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar ...In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.展开更多
In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order...In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order of solutions of the equation.展开更多
A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method ...A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method need to solve large USLS. The proposed solution method for unsymmetrical case performs factorization processes symmetrically on the upper and lower triangular portion of matrix, which differs from previous work based on general unsymmetrical process, and attains higher performance. It is shown that the solution algorithm for USLS can be simply derived from the existing approaches for the symmetrical case. The new matrix factorization algorithm in our method can be implemented easily by modifying a standard JKI symmetrical matrix factorization code. Multi-blocked out-of-core strategies were also developed to expand the solution scale. The approach convincingly increases the speed of the solution process, which is demonstrated with the numerical tests.展开更多
Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing ...Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.展开更多
基金supported by the National Natural Science Foundation of China(No.10771150)the National Basic Research Program of China(No.2005CB321701)+1 种基金the Program for New Century Excellent Talents in University(No.NCET-07-0584)the Natural Science Foundation of Sichuan Province(No.07ZB087)
文摘A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.
基金supported by the National Natural Science Foundation of China(Grant No.12031004 and Grant No.12271474,61877054)the Fundamental Research Foundation for the Central Universities(Project No.K20210337)+1 种基金the Zhejiang University Global Partnership Fund,188170+194452119/003partially funded by a state task of Russian Fundamental Investigations(State Registration No.FFSG-2024-0002)。
文摘Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-vector product,matrix-matrix product,the sum of two matrices,and the calculation of determinant and inverse matrix.We encode the matrix entries into the probability amplitudes of the pure initial states of senders.After applying proper unitary transformation to the complete quantum system,the desired result can be found in certain blocks of the receiver’s density matrix.These quantum protocols can be used as subroutines in other quantum schemes.Furthermore,we present an alternative quantum algorithm for solving linear systems of equations.
基金supported by the National Natural Science Foundation of China under Grant Nos.62172268 and 62302289the Shanghai Science and Technology Project under Grant Nos.21JC1402800 and 23YF1416200。
文摘Variational quantum algorithms are promising methods with the greatest potential to achieve quantum advantage,widely employed in the era of noisy intermediate-scale quantum computing.This study presents an advanced variational hybrid algorithm(EVQLSE)that leverages both quantum and classical computing paradigms to address the solution of linear equation systems.Initially,an innovative loss function is proposed,drawing inspiration from the similarity measure between two quantum states.This function exhibits a substantial improvement in computational complexity when benchmarked against the variational quantum linear solver.Subsequently,a specialized parameterized quantum circuit structure is presented for small-scale linear systems,which exhibits powerful expressive capabilities.Through rigorous numerical analysis,the expressiveness of this circuit structure is quantitatively assessed using a variational quantum regression algorithm,and it obtained the best score compared to the others.Moreover,the expansion in system size is accompanied by an increase in the number of parameters,placing considerable strain on the training process for the algorithm.To address this challenge,an optimization strategy known as quantum parameter sharing is introduced,which proficiently minimizes parameter volume while adhering to exacting precision standards.Finally,EVQLSE is successfully implemented on a quantum computing platform provided by IBM for the resolution of large-scale problems characterized by a dimensionality of 220.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.
文摘Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.
基金supported by the National Science and Technology Innovation 2030-Major Program(2022ZD 0115403)the National Natural Science Foundation of China(61991414)+1 种基金Chongqing Natural Science Foundation(CSTB2023NSCQJQX0018)Beijing Natural Science Foundation(L221005)
文摘Dear Editor,This letter studies output consensus problem of heterogeneous linear multiagent systems over directed graphs. A novel adaptive dynamic event-triggered controller is presented based only on the feedback combination of the agent's own state and neighbors' output,which can achieve exponential output consensus through intermittent communication. The controller is obtained by solving two linear matrix equations, and Zeno behavior is excluded.
基金support from Program Riset Kolaborasi Indonesia(RKI)2024(Grant No.1841/IT1.B07.1/TA.00/2024).
文摘Wave shoaling,which involves an increase in wave amplitude due to changes in water depth,can damage shore-lines.To mitigate this damage,we propose using porous structures such as mangrove forests.In this study,we use a mathematical model to examine how mangroves,acting as porous breakwater,can reduce wave shoaling amplitude.The shallow water equations are used as the governing equations and are modified to account for the presence of porous media.To measure the wave reduction generated by the porous media,the wave transmis-sion coefficient is estimated using analytical and numerical approaches.The separation of variables method and the staggered finite volume method are utilized for each approach,respectively.The numerical results are then validated against the previously obtained analytical solutions.We then vary the friction and porosity parame-ters-determined by the presence and extent of porous media,to evaluate their effectiveness in reducing wave shoaling.
基金Project(52174088)supported by the National Natural Science Foundation of ChinaProject(104972024JYS0007)supported by the Independent Innovation Research Fund Graduate Free Exploration,Wuhan University of Technology,China。
文摘Rocks will suffer different degree of damage under freeze-thaw(FT)cycles,which seriously threatens the long-term stability of rock engineering in cold regions.In order to study the mechanism of rock FT damage,energy calculation method and energy self-inhibition model are introduced to explore their energy characteristics in this paper.The applicability of the energy self-inhibition model was verified by combining the data of FT cycles and uniaxial compression tests of intact and pre-cracked sandstone samples,as well as published reference data.In addition,the energy evolution characteristics of FT damaged rocks were discussed accordingly.The results indicate that the energy self-inhibition model perfectly characterizes the energy accumulation characteristics of FT damaged rocks under uniaxial compression before the peak strength and the energy dissipation characteristics before microcrack unstable growth stage.Taking the FT damaged cyan sandstone sample as an example,it has gone through two stages dominated by energy dissipation mechanism and energy accumulation mechanism,and the energy rate curve of the pre-cracked sample shows a fall-rise phenomenon when approaching failure.Based on the published reference data,it was found that the peak total input energy and energy storage limit conform to an exponential FT decay model,with corresponding decay constants ranging from 0.0021 to 0.1370 and 0.0018 to 0.1945,respectively.Finally,a linear energy storage equation for FT damaged rocks was proposed,and its high reliability and applicability were verified by combining published reference data,the energy storage coefficient of different types of rocks ranged from 0.823 to 0.992,showing a negative exponential relationship with the initial UCS(uniaxial compressive strength).In summary,the mechanism by which FT weakens the mechanical properties of rocks has been revealed from an energy perspective in this paper,which can provide reference for related issues in cold regions.
基金supported by the National Natural Science Foundation of China (11171119 and 10871076)
文摘In this article, we study the complex oscillation problems of entire solutions to homogeneous and nonhomogeneous linear difference equations, and obtain some relations of the exponent of convergence of zeros and the order of growth of entire solutions to complex linear difference equations.
文摘The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditioning of the equations. Based on the singular value decomposition (SVD) of the coefficient matrix, an error based truncation algorithm is proposed in this paper. By rejection of selected small singular values, the influence of noise can be reduced. A simply-supported beam is used as a simulation example to compare the results to other methods. Illustrative numerical examples demonstrate the good efficiency and stability of the algorithm in the nondestructive identification of structural damage through modal data.
基金supported by Shanghai Center for Mathematical Sci-ences,China Scholarship Council(201206105015)National Science Foundation of China(11171119,11001057,11571049)Natural Science Foundation of Guangdong Province in China(2014A030313422)
文摘In this paper,we mainly investigate the dynamical properties of entire solutions of complex differential equations.With some conditions on coefficients,we prove that the set of common limiting directions of Julia sets of solutions,their derivatives and their primitives must have a definite range of measure.
基金supported by Shanghai Center for Mathematical Science China Scholarship Council(201206105015)the National Science Foundation of China(11171119,11001057,11571049)the Natural Science Foundation of Guangdong Province in China(2014A030313422)
文摘In this paper, we mainly investigate entire solutions of complex differential equations with coefficients involving exponential functions, and obtain the dynamical properties of the solutions, their derivatives and primitives. With some conditions on coefficients, for the solutions, their derivatives and their primitives, we consider the common limiting directions of Julia set and the existence of Baker wandering domain.
基金Supported by the National Natural Science Foundation of China(61272300)
文摘Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterative methods and provide a reference for further study and design. Finally, a new iterative method is designed named as the diverse relaxation parameter of the SOR method which, in particular, demonstrates the geometric characteristics. Many examples prove that the method is quite effective.
文摘In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.
基金the National Natural Science Foundation of China(10161006,10571044)the Natural Science Foundation of Guangdong Prov(06025059)
文摘In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.
文摘In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order of solutions of the equation.
基金Project supported by the National Natural Science Foundation of China (Nos. 10232040, 10572002 and 10572003)
文摘A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method need to solve large USLS. The proposed solution method for unsymmetrical case performs factorization processes symmetrically on the upper and lower triangular portion of matrix, which differs from previous work based on general unsymmetrical process, and attains higher performance. It is shown that the solution algorithm for USLS can be simply derived from the existing approaches for the symmetrical case. The new matrix factorization algorithm in our method can be implemented easily by modifying a standard JKI symmetrical matrix factorization code. Multi-blocked out-of-core strategies were also developed to expand the solution scale. The approach convincingly increases the speed of the solution process, which is demonstrated with the numerical tests.
基金Project supported by the National Natural Science Foundation of China(Nos.5130926141030747+3 种基金41102181and 51121005)the National Basic Research Program of China(973 Program)(No.2011CB013503)the Young Teachers’ Initial Funding Scheme of Sun Yat-sen University(No.39000-1188140)
文摘Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.