A comprehensive understanding of exact seismic P-wave reflection and transmission(R/T)coefficients at imperfectly welded or non-welded contact interfaces holds paramount importance in the realm of seismic exploration....A comprehensive understanding of exact seismic P-wave reflection and transmission(R/T)coefficients at imperfectly welded or non-welded contact interfaces holds paramount importance in the realm of seismic exploration.Nonetheless,scant attention has been devoted in previous literature to the investigation of stress-dependent exact R/T coefficients in horizontal transversely isotropic(HTI)media,characterized by a horizontal symmetry axis,at such interfaces.Addressing this scholarly gap,we present exact R/T coefficient formulations specifically tailored to an imperfectly welded contact interface separating two HTI media under the influence of in-situ horizontal stress.We begin by deriving the equation of motion for a stressed HTI medium,utilizing the theoretical framework of acoustoelasticity to examine the impact of in-situ horizontal stress on the overarching elastic properties of HTI media.Precise boundary conditions are then established at the imperfectly welded contact interface by applying generalized stress-strain relationships and linear-slip theory,with the influence of in-situ horizontal stress on the interface further explored through the linear-slip model.By integrating these elements with the seismic wave displacement equation,we derive exact R/T coefficient formulations applicable to an imperfectly welded contact interface between two HTI media.Numerical analyses are conducted to elucidate the effects of in-situ horizontal stress on critical parameters such as rock density,seismic wave velocity,Thomsen-type anisotropy parameters,R/T coefficients,and seismic reflection responses at the imperfectly welded contact interface.Furthermore,the proposed formulations are frequency-dependent,with the imperfectly welded contact interface acting as a frequency-selective filter for both reflected and transmitted waves.Notably,under conditions of sufficiently large incident angles,the sensitivity of R/T coefficients to key influencing factors increases significantly.The derived R/T coefficient formulations and the accompanying numerical results offer valuable insights for fracture characterization,stress-dependent parameter inversion,and in-situ stress detection.展开更多
摩擦力是影响直线伺服系统低速运行与点对点定位精度的主要非线性扰动。广义麦克斯韦(generalized Maxwellslip,GMS)摩擦模型虽然可以准确描述摩擦特性用于前馈补偿,但其存在切换点过渡时振荡的问题,同时易受测量噪声和摩擦参数变化等...摩擦力是影响直线伺服系统低速运行与点对点定位精度的主要非线性扰动。广义麦克斯韦(generalized Maxwellslip,GMS)摩擦模型虽然可以准确描述摩擦特性用于前馈补偿,但其存在切换点过渡时振荡的问题,同时易受测量噪声和摩擦参数变化等影响。为此,该文提出基于平滑GMS模型和改进扩张状态观测器(extended state observer,ESO)的复合摩擦补偿策略。首先,引入过渡用双曲正切函数以解决GMS模型中在切换点的反复穿越问题,并给出该模型的离线辨识方法。其次,设计基于模型信息的四阶ESO补偿剩余摩擦力与未知扰动,并引入切比雪夫滤波器整定观测器增益,以降低扰动观测与噪声敏感之间的冲突。为验证所提摩擦补偿策略的有效性,在小型高精度永磁同步直线电机定位平台上进行定位实验。实验结果验证了所提摩擦补偿策略的可行性和有效性。展开更多
基金the sponsorship of the National Natural Science Foundation of China(42474172,42130810)the Science and Technology Innovation Program of Hunan Province(2022RC1238)+1 种基金the Natural Science Foundation of Hunan Province(2025JJ20036,2023JJ30663)the Changzhou Science and Technology Support Project(CE20235069)。
文摘A comprehensive understanding of exact seismic P-wave reflection and transmission(R/T)coefficients at imperfectly welded or non-welded contact interfaces holds paramount importance in the realm of seismic exploration.Nonetheless,scant attention has been devoted in previous literature to the investigation of stress-dependent exact R/T coefficients in horizontal transversely isotropic(HTI)media,characterized by a horizontal symmetry axis,at such interfaces.Addressing this scholarly gap,we present exact R/T coefficient formulations specifically tailored to an imperfectly welded contact interface separating two HTI media under the influence of in-situ horizontal stress.We begin by deriving the equation of motion for a stressed HTI medium,utilizing the theoretical framework of acoustoelasticity to examine the impact of in-situ horizontal stress on the overarching elastic properties of HTI media.Precise boundary conditions are then established at the imperfectly welded contact interface by applying generalized stress-strain relationships and linear-slip theory,with the influence of in-situ horizontal stress on the interface further explored through the linear-slip model.By integrating these elements with the seismic wave displacement equation,we derive exact R/T coefficient formulations applicable to an imperfectly welded contact interface between two HTI media.Numerical analyses are conducted to elucidate the effects of in-situ horizontal stress on critical parameters such as rock density,seismic wave velocity,Thomsen-type anisotropy parameters,R/T coefficients,and seismic reflection responses at the imperfectly welded contact interface.Furthermore,the proposed formulations are frequency-dependent,with the imperfectly welded contact interface acting as a frequency-selective filter for both reflected and transmitted waves.Notably,under conditions of sufficiently large incident angles,the sensitivity of R/T coefficients to key influencing factors increases significantly.The derived R/T coefficient formulations and the accompanying numerical results offer valuable insights for fracture characterization,stress-dependent parameter inversion,and in-situ stress detection.
文摘摩擦力是影响直线伺服系统低速运行与点对点定位精度的主要非线性扰动。广义麦克斯韦(generalized Maxwellslip,GMS)摩擦模型虽然可以准确描述摩擦特性用于前馈补偿,但其存在切换点过渡时振荡的问题,同时易受测量噪声和摩擦参数变化等影响。为此,该文提出基于平滑GMS模型和改进扩张状态观测器(extended state observer,ESO)的复合摩擦补偿策略。首先,引入过渡用双曲正切函数以解决GMS模型中在切换点的反复穿越问题,并给出该模型的离线辨识方法。其次,设计基于模型信息的四阶ESO补偿剩余摩擦力与未知扰动,并引入切比雪夫滤波器整定观测器增益,以降低扰动观测与噪声敏感之间的冲突。为验证所提摩擦补偿策略的有效性,在小型高精度永磁同步直线电机定位平台上进行定位实验。实验结果验证了所提摩擦补偿策略的可行性和有效性。