Comprehensive study on novel Linear-Dispersion Division Multiple-Access(LDDMA) for multi-user uplink Multiple-Input Multiple-Output(MIMO)systems is proposed.In the new multi-plexing scheme,each user’s information sym...Comprehensive study on novel Linear-Dispersion Division Multiple-Access(LDDMA) for multi-user uplink Multiple-Input Multiple-Output(MIMO)systems is proposed.In the new multi-plexing scheme,each user’s information symbol is dispersed by a User-Specific Matrix(USM)both inspace and time domain and linearly combined at base-station side.And a simple random search al-gorithm,based on capacity maximization criteria,is developed to generate a bank of USMs.Simulationresults are presented to demonstrate the advantages of LDDMA.When the Bit Error Rate(BER)reaches 10–3,the performance gains are 3dB and 5dB,compared with Time-Division Linear DispersionCodes(TD-LDC)and BLAST,respectively.展开更多
基金the National Natural Science Foundation of China(No.60572066)863 Program of China(No.2006AA01Z266).
文摘Comprehensive study on novel Linear-Dispersion Division Multiple-Access(LDDMA) for multi-user uplink Multiple-Input Multiple-Output(MIMO)systems is proposed.In the new multi-plexing scheme,each user’s information symbol is dispersed by a User-Specific Matrix(USM)both inspace and time domain and linearly combined at base-station side.And a simple random search al-gorithm,based on capacity maximization criteria,is developed to generate a bank of USMs.Simulationresults are presented to demonstrate the advantages of LDDMA.When the Bit Error Rate(BER)reaches 10–3,the performance gains are 3dB and 5dB,compared with Time-Division Linear DispersionCodes(TD-LDC)and BLAST,respectively.