This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linea...This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linear slide, where the roll error motion measurement will be carried out repeatedly to confirm whether the surface form errors of slide guideways in the linear slide are su ciently corrected by hand scraping process. In the proposed method, one of the clinometers is mounted on the slide table, while the other is placed on a vibration isolation table, on which the precision linear slide is mounted, so that influences of external disturbances can be cancelled. An experimental setup is built on a vibration isolation table, and some experiments are carried out to verify the feasibility of the proposed method.展开更多
A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is p...A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is presented,in which the nonsingular terminal sliding surface is defined as a special nonsingular terminal function and the convergence time of the system states can be specified.The affine nonlinear system is firstly decoupled into linear subsystems via feedback linearization.Then,a nonsingular terminal sliding surface is defined and the NTSMC method is applied to each subsystem separately to ensure the finite time convergence of the closed-loop system.The verification example is given to demonstrate the effectiveness and robustness of the proposed approach.The proposed approach exhibits a considerable advantage in terms of faster tracking error convergence and less chattering compared with the conventional sliding mode control(CSMC).展开更多
This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee t...This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feas.ibility of the proposed technique.展开更多
In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the a...In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.展开更多
Aiming to improve the control accuracy of the vehicle height for the air suspension system,deeply analyzing the processes of variable mass gas thermodynamics and vehicle dynamics,a nonlinear height control model of th...Aiming to improve the control accuracy of the vehicle height for the air suspension system,deeply analyzing the processes of variable mass gas thermodynamics and vehicle dynamics,a nonlinear height control model of the air suspension vehicle was built. To deal with the nonlinear characteristic existing in the lifting and lowering processes,the nonlinear model of vehicle height control was linearized by using a feedback linearization method. Then,based on the linear full vehicle model,the sliding model controller was designed to achieve the control variables. Finally,the nonlinear control algorithm in the original coordinates can be achieved by the inverse transformation of coordinates. To validate the accuracy and effectiveness of the sliding mode controller,the height control processes were simulated in Matlab,i. e.,the lifting and lowering processes of the air suspension vehicle were taken when vehicle was in stationary and driving at a constant speed. The simulation results show that,compared to other controllers,the designed sliding model controller based on the feedback linearization can effectively solve the "overshoot"problem,existing in the height control process,and force the vehicle height to reach the desired value,so as to greatly improve the speed and accuracy of the height control process. Besides,the sliding mode controller can well regulate the roll and pitch motions of the vehicle body,thereby improving the vehicle's ride comfort.展开更多
This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional th...This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.展开更多
This paper presents the design of a non-linear controller to prevent an electric power system losing synchronism after a large sudden fault and to achieve good post fault voltage level. By Direct Feedback Linearizatio...This paper presents the design of a non-linear controller to prevent an electric power system losing synchronism after a large sudden fault and to achieve good post fault voltage level. By Direct Feedback Linearization (DFL) technique robust non-linear excitation controller is designed which will achieve stability enhancement and voltage regulation of power system. By utilizing this technique, there is a possibility of selecting various control loops for a particular application problem. This method plays an important role in control system and power system engineering problem where all relevant variables cannot be directly measured. Simulated results carried out on a single machine infinite bus power system model which shows the enhancement of transient stability regardless of the fault and changes in network parameters.展开更多
The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear sy...The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.展开更多
A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the...A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme.展开更多
This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz condition...This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz conditions and parameter uncertainties are supposed to reside in a polytope. The resulting filter is of the Luenberger type with the discontinuous form. A sufficient condition with delay-dependency is proposed for existence of such a filter. And the desired filter can be found by solving a set of matrix inequalities. The resulting filter adapts for the systems whose noise input is real functional bounded and not be required to be energy bounded. A numerical example is given to illustrate the effectiveness of the proposed design method.展开更多
基金supported by Japan Society for the Promotion and Science (JSPS)
文摘This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linear slide, where the roll error motion measurement will be carried out repeatedly to confirm whether the surface form errors of slide guideways in the linear slide are su ciently corrected by hand scraping process. In the proposed method, one of the clinometers is mounted on the slide table, while the other is placed on a vibration isolation table, on which the precision linear slide is mounted, so that influences of external disturbances can be cancelled. An experimental setup is built on a vibration isolation table, and some experiments are carried out to verify the feasibility of the proposed method.
基金supported by the National Natural Science Foundation of China(11502288)
文摘A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is presented,in which the nonsingular terminal sliding surface is defined as a special nonsingular terminal function and the convergence time of the system states can be specified.The affine nonlinear system is firstly decoupled into linear subsystems via feedback linearization.Then,a nonsingular terminal sliding surface is defined and the NTSMC method is applied to each subsystem separately to ensure the finite time convergence of the closed-loop system.The verification example is given to demonstrate the effectiveness and robustness of the proposed approach.The proposed approach exhibits a considerable advantage in terms of faster tracking error convergence and less chattering compared with the conventional sliding mode control(CSMC).
基金Project supported by the National Natural Science Foundation of China (Grant No 60674026)the Key Project of Chinese Ministry of Education (Grant No 107058)+1 种基金the Jiangsu Provincial Natural Science Foundation of China (Grant No BK2007016)the Jiangsu Provincial Program for Postgraduate Scientific Innovative Research of Jiangnan University (Grant No CX07B_116z)and PIRT Jiangnan
文摘This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feas.ibility of the proposed technique.
文摘In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.
基金Supported by the National Natural Science Foundation of China(5137504651205021)the Basic Research Foundation of Beijing Institute of Technology(20120342002)
文摘Aiming to improve the control accuracy of the vehicle height for the air suspension system,deeply analyzing the processes of variable mass gas thermodynamics and vehicle dynamics,a nonlinear height control model of the air suspension vehicle was built. To deal with the nonlinear characteristic existing in the lifting and lowering processes,the nonlinear model of vehicle height control was linearized by using a feedback linearization method. Then,based on the linear full vehicle model,the sliding model controller was designed to achieve the control variables. Finally,the nonlinear control algorithm in the original coordinates can be achieved by the inverse transformation of coordinates. To validate the accuracy and effectiveness of the sliding mode controller,the height control processes were simulated in Matlab,i. e.,the lifting and lowering processes of the air suspension vehicle were taken when vehicle was in stationary and driving at a constant speed. The simulation results show that,compared to other controllers,the designed sliding model controller based on the feedback linearization can effectively solve the "overshoot"problem,existing in the height control process,and force the vehicle height to reach the desired value,so as to greatly improve the speed and accuracy of the height control process. Besides,the sliding mode controller can well regulate the roll and pitch motions of the vehicle body,thereby improving the vehicle's ride comfort.
文摘This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.
文摘This paper presents the design of a non-linear controller to prevent an electric power system losing synchronism after a large sudden fault and to achieve good post fault voltage level. By Direct Feedback Linearization (DFL) technique robust non-linear excitation controller is designed which will achieve stability enhancement and voltage regulation of power system. By utilizing this technique, there is a possibility of selecting various control loops for a particular application problem. This method plays an important role in control system and power system engineering problem where all relevant variables cannot be directly measured. Simulated results carried out on a single machine infinite bus power system model which shows the enhancement of transient stability regardless of the fault and changes in network parameters.
基金supported by the Doctoral Foundation of Qingdao University of Science and Technology(0022330).
文摘The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.
基金This project was supported by the National Natural Science Foundation of China(69874008)
文摘A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme.
基金Supported by National Natural Science Foundation of P. R. China (69874008)
文摘This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz conditions and parameter uncertainties are supposed to reside in a polytope. The resulting filter is of the Luenberger type with the discontinuous form. A sufficient condition with delay-dependency is proposed for existence of such a filter. And the desired filter can be found by solving a set of matrix inequalities. The resulting filter adapts for the systems whose noise input is real functional bounded and not be required to be energy bounded. A numerical example is given to illustrate the effectiveness of the proposed design method.