期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Physics-Informed Graph Learning for Shape Prediction in Robot Manipulate of Deformable Linear Objects
1
作者 Meixuan Wang Junliang Wang +2 位作者 Jie Zhang Xinting Liao Guojin Li 《Chinese Journal of Mechanical Engineering》 2025年第6期154-165,共12页
Shape prediction of deformable linear objects(DLO)plays critical roles in robotics,medical devices,aerospace,and manufacturing,especially in manipulating objects such as cables,wires,and fibers.Due to the inherent fle... Shape prediction of deformable linear objects(DLO)plays critical roles in robotics,medical devices,aerospace,and manufacturing,especially in manipulating objects such as cables,wires,and fibers.Due to the inherent flexibility of DLO and their complex deformation behaviors,such as bending and torsion,it is challenging to predict their dynamic characteristics accurately.Although the traditional physical modeling method can simulate the complex deformation behavior of DLO,the calculation cost is high and it is difficult to meet the demand of real-time prediction.In addition,the scarcity of data resources also limits the prediction accuracy of existing models.To solve these problems,a method of fiber shape prediction based on a physical information graph neural network(PIGNN)is proposed in this paper.This method cleverly combines the powerful expressive power of graph neural networks with the strict constraints of physical laws.Specifically,we learn the initial deformation model of the fiber through graph neural networks(GNN)to provide a good initial estimate for the model,which helps alleviate the problem of data resource scarcity.During the training process,we incorporate the physical prior knowledge of the dynamic deformation of the fiber optics into the loss function as a constraint,which is then fed back to the network model.This ensures that the shape of the fiber optics gradually approaches the true target shape,effectively solving the complex nonlinear behavior prediction problem of deformable linear objects.Experimental results demonstrate that,compared to traditional methods,the proposed method significantly reduces execution time and prediction error when handling the complex deformations of deformable fibers.This showcases its potential application value and superiority in fiber manipulation. 展开更多
关键词 Deformable linear objects Fiber Physics-informed graph neural network(PIGNN) Shape prediction
在线阅读 下载PDF
A Primal-Dual Infeasible-Interior-Point Algorithm for Multiple Objective Linear Programming Problems
2
作者 HUANG Hui FEI Pu-sheng YUAN Yuan 《Wuhan University Journal of Natural Sciences》 CAS 2005年第2期351-354,共4页
A primal-dual infeasible interior point algorithm for multiple objective linear programming(MOLP)problems was presented.In contrast to the current MOLP algorithm.moving through the interior of polytope but not confini... A primal-dual infeasible interior point algorithm for multiple objective linear programming(MOLP)problems was presented.In contrast to the current MOLP algorithm.moving through the interior of polytope but not confining the iterates within the feasible region in our proposed algorithm result in a solution approach that is quite different and less sensitive to problem size,so providing the potential to dramatically improve the practical computation effectiveness. 展开更多
关键词 multiple objective linear programming primal dual infeasible INTERIOR point algorithm
在线阅读 下载PDF
Optimal Irrigation Planning and Operation of Multi Objective Reservoir Using Fuzzy Logic
3
作者 Jyotiba B. Gurav 《Journal of Water Resource and Protection》 2016年第2期226-236,共11页
In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and M... In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and Manure Utilization (MU) under conflicting situation and also, for maximization of Releases for Irrigation (RI) and Releases for Power (RP) simultaneously under uncertainty by considering the fuzziness in the objective functions. The developed models have been applied using the LINGO 13 (Language for Interactive General Optimization) optimization software to the case study of the Jayakwadi Project Stage-II across Sindhphana River, in the State of Maharashtra India. The various constraints have been taken into consideration like sowing area, affinity to crop, labour availability, manure availability, water availability for optimal cropping pattern planning. Similarly constraints to find the optimal reservoir operating policy are releases for power and turbine capacity, irrigation demand, reservoir storage capacity, reservoir storage continuity. The level of satisfaction for a compromised solution of optimal cropping pattern planning for four conflicting objectives under fuzzy environment is worked out to be λ = 0.68. The MOFLP compromised solution provides NB = 1088.46 (Million Rupees), CP = 241003 (Tons), EG = 23.13 (Million Man days) and MU = 111454.70 (Tons) respectively. The compromised solution for optimal operation of multi objective reservoir yields the level of satisfaction (λ) = 0.533 for maximizing the releases for irrigation and power simultaneously by satisfying the constraint of the system under consideration. The compromised solution provides the optimal releases, i.e. RI = 348.670 Mm3 and RP = 234.285 Mm3 respectively. 展开更多
关键词 Irrigation Planning Reservoir Operation UNCERTAINTY Multi Objective Fuzzy linear Programming
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部