We consider the partially linear multiplicative model with monotonic constraint for the analysis of positive response data. We propose a constrained least product relative error (LPRE) estimation procedure for the mod...We consider the partially linear multiplicative model with monotonic constraint for the analysis of positive response data. We propose a constrained least product relative error (LPRE) estimation procedure for the model by means of B-spline basis expansion. We have also established asymptotic properties of the proposed estimators under regularity conditions. We finally provide numerical simulations and a real data application to assess the finite sample performance of the developed methodology.展开更多
In this paper, a new global algorithm is presented to globally solve the linear multiplicative programming(LMP). The problem(LMP) is firstly converted into an equivalent programming problem(LMP(H))by introduci...In this paper, a new global algorithm is presented to globally solve the linear multiplicative programming(LMP). The problem(LMP) is firstly converted into an equivalent programming problem(LMP(H))by introducing p auxiliary variables. Then by exploiting structure of(LMP(H)), a linear relaxation programming(LP(H)) of(LMP(H)) is obtained with a problem(LMP) reduced to a sequence of linear programming problems. The algorithm is used to compute the lower bounds called the branch and bound search by solving linear relaxation programming problems(LP(H)). The proposed algorithm is proven that it is convergent to the global minimum through the solutions of a series of linear programming problems. Some examples are given to illustrate the feasibility of the proposed algorithm.展开更多
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha...Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.展开更多
The Madden-Julian Oscillation(MJO)is a key atmospheric component connecting global weather and climate.It func-tions as a primary source for subseasonal forecasts.Previous studies have highlighted the vital impact of ...The Madden-Julian Oscillation(MJO)is a key atmospheric component connecting global weather and climate.It func-tions as a primary source for subseasonal forecasts.Previous studies have highlighted the vital impact of oceanic processes on MJO propagation.However,few existing MJO prediction approaches adequately consider these factors.This study determines the critical region for the oceanic processes affecting MJO propagation by utilizing 22-year Climate Forecast System Reanalysis data.By intro-ducing surface and subsurface oceanic temperature within this critical region into a lagged multiple linear regression model,the MJO forecasting skill is considerably optimized.This optimization leads to a 12 h enhancement in the forecasting skill of the first principal component and efficiently decreases prediction errors for the total predictions.Further analysis suggests that,during the years in which MJO events propagate across the Maritime Continent over a more southerly path,the optimized statistical forecasting model obtains better improvements in MJO prediction.展开更多
According to some main assumptions in the Rouse Formula,it analyzes the applicability of Rouse distribution in the coastal region.Based on the classical Rouse Formula,the linear form of Rouse Formula and the transport...According to some main assumptions in the Rouse Formula,it analyzes the applicability of Rouse distribution in the coastal region.Based on the classical Rouse Formula,the linear form of Rouse Formula and the transport characteristics of offshore sediment were used to take lnz/h,lnc_(a),c_(a),u,lnu and z/h as the independent variables.The multiple liner regression method was used to analyze the influence of the independent variables on the vertical distribution of sediment concentration.By using the method of significance test,the factors(lnu)that have less influence on sediment concentration among 6 variables were eliminated.The correlation coefficient between the calculated sediment concentration and the measured sediment concentration indicates that the adopted variables can reflect the characteristics of vertical distribution of concentration of fine sediment near shore under complex dynamic conditions.展开更多
Rainfall is an important factor in estimating the event mean concentration (EMC) which is used to quantify the washed-off pollutant concentrations from non-point sources (NPSs). Pollutant loads could also be calcu...Rainfall is an important factor in estimating the event mean concentration (EMC) which is used to quantify the washed-off pollutant concentrations from non-point sources (NPSs). Pollutant loads could also be calculated using rainfall, catchment area and runoff coefficient. In this study, runoff quantity and quality data gathered from a 28-month monitoring conducted on the road and parking lot sites in Korea were evaluated using multiple linear regression (MLR) to develop equations for estimating pollutant loads and EMCs as a function of rainfall variables. The results revealed that total event rainfall and average rainfall intensity are possible predictors of pollutant loads. Overall, the models are indicators of the high uncertainties of NPSs; perhaps estimation of EMCs and loads could be accurately obtained by means of water quality sampling or a long term monitoring is needed to gather more data that can be used for the development of estimation models.展开更多
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea ...Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.展开更多
Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to p...Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and elastic modulus(E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets.Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination(R2),root mean square error(RMSE), and mean absolute error(MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156,respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2value and lower errors.展开更多
Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence s...Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration.展开更多
In agricultural systems,the regular monitoring of Soil Organic Matter(SOM)dynamics is essential.This task is costly and time-consuming when using the conventional method,especially in a very fragmented area and with i...In agricultural systems,the regular monitoring of Soil Organic Matter(SOM)dynamics is essential.This task is costly and time-consuming when using the conventional method,especially in a very fragmented area and with intensive agricultural activity,such as the area of Sidi Bennour.The study area is located in the Doukkala irrigated perimeter in Morocco.Satellite data can provide an alternative and fill this gap at a low cost.Models to predict SOM from a satellite image,whether linear or nonlinear,have shown considerable interest.This study aims to compare SOM prediction using Multiple Linear Regression(MLR)and Artificial Neural Networks(ANN).A total of 368 points were collected at a depth of 0-30 cm and analyzed in the laboratory.An image at 15 m resolution(MSPAN)was produced from a 30 m resolution(MS)Landsat-8 image using image pansharpening processing and panchromatic band(15 m).The results obtained show that the MLR models predicted the SOM with(training/validation)R^(2)values of 0.62/0.63 and 0.64/0.65 and RMSE values of 0.23/0.22 and 0.22/0.21 for the MS and MSPAN images,respectively.In contrast,the ANN models predicted SOM with R2 values of 0.65/0.66 and 0.69/0.71 and RMSE values of 0.22/0.10 and 0.21/0.18 for the MS and MSPAN images,respectively.Image pansharpening improved the prediction accuracy by 2.60%and 4.30%and reduced the estimation error by 0.80%and 1.30%for the MLR and ANN models,respectively.展开更多
In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of ...In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of 46 compounds and a test set of 10 compounds. The electronic and topological descriptors computed by the Scigress package and Dragon software were used as predictor variables. Multiple linear regression (MLR) and support vector machine (SVM) were utilized to build the linear and nonlinear QSAR models, respectively. The obtained models with five descriptors show strong predictive ability. The linear model fits the training set with R2 = 0.71, with higher SVM values of R2 = 0.77. The validation results obtained from the test set indicate that the SVM model is comparable or superior to that obtained by MLR, both in terms of prediction ability and robustness.展开更多
The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The r...The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The response variables were the area burned by lightning- caused fire, human-caused fire, and total burned area. The predictor variables were nine climate variables collected from the local weather station. Three regression models were utilized, including multiple linear regression, log- linear model (log-transformation on both response and predictor variables), and gamma-generalized linear model. The goodness-of-fit of the models were compared based on model fitting statistics such as R2, AIC, and RMSE. The results revealed that the gamma-generalized linear model was generally superior to both multiple linear regressionmodel and log-linear model for fitting the fire data. Further, the best models were selected based on the criteria that the climate variables were statistically significant at at = 0.05. The gamma best models indicated that maximum wind speed, precipitation, and days that rainfall greater than 0.1 mm had significant impacts on the area burned by the lightning-caused fire, while the mean temperature and minimum relative humidity were the .main drivers of the burned area caused by human activities. Overall, the total burned area by forest fire was significantly influenced by days that rainfall greater than 0.1 mm and minimum rela- tive humidity, indicating that the moisture condition of forest stands determine the burned area by forest fire.展开更多
The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and st...The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.展开更多
Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the applica...Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the application of statistical models for evaluating the explanatory variables of space-time variation in crop NUE is still under-researched.In this study,stepwise multiple linear regression(SMLR)and Random Forest(RF)were used to evaluate the spatial and temporal variation of NUE indicators(i.e.,partial factor productivity of N(PFPN);partial nutrient balance of N(PNBN))at county scale in Northeast China(Heilongjiang,Liaoning and Jilin provinces)from 1990 to 2015.Explanatory variables included agricultural management practices,topography,climate,economy,soil and crop types.Results revealed that the PFPN was higher in the northern parts and lower in the center of the Northeast China and PNBN increased from southern to northern parts during the 1990–2015 period.The NUE indicators decreased with time in most counties during the study period.The model efficiency coefficients of the SMLR and RF models were 0.44 and 0.84 for PFPN,and 0.67 and 0.89 for PNBN,respectively.The RF model had higher relative importance of soil and climatic covariates and lower relative importance of crop covariates compared to the SMLR model.The planting area index of vegetables and beans,soil clay content,saturated water content,enhanced vegetation index in November&December,soil bulk density,and annual minimum temperature were the main explanatory variables for both NUE indicators.This is the first study to show the quantitative relative importance of explanatory variables for NUE at a county level in Northeast China using RF and SMLR.This novel study gives reference measurements to improve crop NUE which is one of the most effective means of managing N for sustainable development,ensuring food security,alleviating environmental degradation and increasing farmer’s profitability.展开更多
The kinetics equation of deposition rate was implemented to help explain some of the mechanisms responsible for structures observed during the deposition of CoFeB films on poly-ester plastic. The plating rate of elect...The kinetics equation of deposition rate was implemented to help explain some of the mechanisms responsible for structures observed during the deposition of CoFeB films on poly-ester plastic. The plating rate of electroless CoFeB films is a function of concentration of sodium tetrahydroborate, pH of the plating bath, plating temperature and the metallic ratio. The estimated regression coefficient, confidence interval, residual error and confidence interval were confirmed by computer program. The optimal composition of the plating bath was obtained and the dynamic electromagnetic parameters of films were measured in the 2-10 GHz range. At 2 GHz, the permeability, magnetic loss of the electroless CoFeB films were 304,76.6 respectively as the concentration of reducer is 1 g·L^-1.展开更多
The seed method is used for solving multiple linear systems A (i)x (i) =b (i) for 1≤i≤s, where the coefficient matrix A (i) and the right-hand side b (i) are different in general. It is known that the CG meth...The seed method is used for solving multiple linear systems A (i)x (i) =b (i) for 1≤i≤s, where the coefficient matrix A (i) and the right-hand side b (i) are different in general. It is known that the CG method is an effective method for symmetric coefficient matrices A (i). In this paper, the FOM method is employed to solve multiple linear sy stems when coefficient matrices are non-symmetric matrices. One of the systems is selected as the seed system which generates a Krylov subspace, then the resi duals of other systems are projected onto the generated Krylov subspace to get t he approximate solutions for the unsolved ones. The whole process is repeated u ntil all the systems are solved.展开更多
A primal-dual infeasible interior point algorithm for multiple objective linear programming(MOLP)problems was presented.In contrast to the current MOLP algorithm.moving through the interior of polytope but not confini...A primal-dual infeasible interior point algorithm for multiple objective linear programming(MOLP)problems was presented.In contrast to the current MOLP algorithm.moving through the interior of polytope but not confining the iterates within the feasible region in our proposed algorithm result in a solution approach that is quite different and less sensitive to problem size,so providing the potential to dramatically improve the practical computation effectiveness.展开更多
Recognition method of traffic flow change point was put forward based on traffic flow theory and the statistical change point analysis of multiple linear regressions. The method was calibrated and tested with the fiel...Recognition method of traffic flow change point was put forward based on traffic flow theory and the statistical change point analysis of multiple linear regressions. The method was calibrated and tested with the field data of Liantong Road of Zibo city to verify the validity and the feasibility of the theory. The results show that change point method of multiple linear regression can make out the rule of quantitative changes in traffic flow more accurately than ordinary methods. So, the change point method can be applied to traffic information management system more effectively.展开更多
In this paper we firstly select main factors relating to urbanization level of Xiantao District in Hubei Province by main element, then, make model of urbanization level by analysis of multiple liner regression, and l...In this paper we firstly select main factors relating to urbanization level of Xiantao District in Hubei Province by main element, then, make model of urbanization level by analysis of multiple liner regression, and lastly predict its urbanization level展开更多
文摘We consider the partially linear multiplicative model with monotonic constraint for the analysis of positive response data. We propose a constrained least product relative error (LPRE) estimation procedure for the model by means of B-spline basis expansion. We have also established asymptotic properties of the proposed estimators under regularity conditions. We finally provide numerical simulations and a real data application to assess the finite sample performance of the developed methodology.
基金Supported by the PhD Start-up Fund of Natural Science Foundation of Guangdong Province,China(No.S2013040012506)China Postdoctoral Science Foundation Funded Project(2014M562152)
文摘In this paper, a new global algorithm is presented to globally solve the linear multiplicative programming(LMP). The problem(LMP) is firstly converted into an equivalent programming problem(LMP(H))by introducing p auxiliary variables. Then by exploiting structure of(LMP(H)), a linear relaxation programming(LP(H)) of(LMP(H)) is obtained with a problem(LMP) reduced to a sequence of linear programming problems. The algorithm is used to compute the lower bounds called the branch and bound search by solving linear relaxation programming problems(LP(H)). The proposed algorithm is proven that it is convergent to the global minimum through the solutions of a series of linear programming problems. Some examples are given to illustrate the feasibility of the proposed algorithm.
基金funded by the National Key R&D Program of China(Grant No.2022YFC2903904)the National Natural Science Foundation of China(Grant Nos.51904057 and U1906208).
文摘Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.
基金supported by the National Key Program for Developing Basic Science(Nos.2022YFF0801702 and 2022YFE0106600)the National Natural Science Foundation of China(Nos.42175060 and 42175021)the Jiangsu Province Science Foundation(No.BK20250200302).
文摘The Madden-Julian Oscillation(MJO)is a key atmospheric component connecting global weather and climate.It func-tions as a primary source for subseasonal forecasts.Previous studies have highlighted the vital impact of oceanic processes on MJO propagation.However,few existing MJO prediction approaches adequately consider these factors.This study determines the critical region for the oceanic processes affecting MJO propagation by utilizing 22-year Climate Forecast System Reanalysis data.By intro-ducing surface and subsurface oceanic temperature within this critical region into a lagged multiple linear regression model,the MJO forecasting skill is considerably optimized.This optimization leads to a 12 h enhancement in the forecasting skill of the first principal component and efficiently decreases prediction errors for the total predictions.Further analysis suggests that,during the years in which MJO events propagate across the Maritime Continent over a more southerly path,the optimized statistical forecasting model obtains better improvements in MJO prediction.
文摘According to some main assumptions in the Rouse Formula,it analyzes the applicability of Rouse distribution in the coastal region.Based on the classical Rouse Formula,the linear form of Rouse Formula and the transport characteristics of offshore sediment were used to take lnz/h,lnc_(a),c_(a),u,lnu and z/h as the independent variables.The multiple liner regression method was used to analyze the influence of the independent variables on the vertical distribution of sediment concentration.By using the method of significance test,the factors(lnu)that have less influence on sediment concentration among 6 variables were eliminated.The correlation coefficient between the calculated sediment concentration and the measured sediment concentration indicates that the adopted variables can reflect the characteristics of vertical distribution of concentration of fine sediment near shore under complex dynamic conditions.
基金provided by the Korean Ministry of Environment and Eco Star Project
文摘Rainfall is an important factor in estimating the event mean concentration (EMC) which is used to quantify the washed-off pollutant concentrations from non-point sources (NPSs). Pollutant loads could also be calculated using rainfall, catchment area and runoff coefficient. In this study, runoff quantity and quality data gathered from a 28-month monitoring conducted on the road and parking lot sites in Korea were evaluated using multiple linear regression (MLR) to develop equations for estimating pollutant loads and EMCs as a function of rainfall variables. The results revealed that total event rainfall and average rainfall intensity are possible predictors of pollutant loads. Overall, the models are indicators of the high uncertainties of NPSs; perhaps estimation of EMCs and loads could be accurately obtained by means of water quality sampling or a long term monitoring is needed to gather more data that can be used for the development of estimation models.
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
基金The National Natural Science Foundation of China under contract No.11174235the Science and Technology Development Project of Shaanxi Province of China under contract No.2010KJXX-02+2 种基金the Program for New Century Excellent Talents in University of China under contract No. NCET-08-0455the Science and Technology Innovation Foundation of Northwestern Polytechnical University of Chinathe Doctorate Foundation of Northwestern Polytechnical University of China under contract No.CX201226.
文摘Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.
文摘Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and elastic modulus(E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets.Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination(R2),root mean square error(RMSE), and mean absolute error(MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156,respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2value and lower errors.
文摘Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration.
文摘In agricultural systems,the regular monitoring of Soil Organic Matter(SOM)dynamics is essential.This task is costly and time-consuming when using the conventional method,especially in a very fragmented area and with intensive agricultural activity,such as the area of Sidi Bennour.The study area is located in the Doukkala irrigated perimeter in Morocco.Satellite data can provide an alternative and fill this gap at a low cost.Models to predict SOM from a satellite image,whether linear or nonlinear,have shown considerable interest.This study aims to compare SOM prediction using Multiple Linear Regression(MLR)and Artificial Neural Networks(ANN).A total of 368 points were collected at a depth of 0-30 cm and analyzed in the laboratory.An image at 15 m resolution(MSPAN)was produced from a 30 m resolution(MS)Landsat-8 image using image pansharpening processing and panchromatic band(15 m).The results obtained show that the MLR models predicted the SOM with(training/validation)R^(2)values of 0.62/0.63 and 0.64/0.65 and RMSE values of 0.23/0.22 and 0.22/0.21 for the MS and MSPAN images,respectively.In contrast,the ANN models predicted SOM with R2 values of 0.65/0.66 and 0.69/0.71 and RMSE values of 0.22/0.10 and 0.21/0.18 for the MS and MSPAN images,respectively.Image pansharpening improved the prediction accuracy by 2.60%and 4.30%and reduced the estimation error by 0.80%and 1.30%for the MLR and ANN models,respectively.
基金Supported by the Ministry of Environmental Protection of China(No.2011467037)
文摘In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of 46 compounds and a test set of 10 compounds. The electronic and topological descriptors computed by the Scigress package and Dragon software were used as predictor variables. Multiple linear regression (MLR) and support vector machine (SVM) were utilized to build the linear and nonlinear QSAR models, respectively. The obtained models with five descriptors show strong predictive ability. The linear model fits the training set with R2 = 0.71, with higher SVM values of R2 = 0.77. The validation results obtained from the test set indicate that the SVM model is comparable or superior to that obtained by MLR, both in terms of prediction ability and robustness.
基金funded by Asia-Pacific Forests Net(APFNET/2010/FPF/001)National Natural Science Foundation of China(Grant No.31400552)Forestry industry research special funds for public welfare projects(201404402)
文摘The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The response variables were the area burned by lightning- caused fire, human-caused fire, and total burned area. The predictor variables were nine climate variables collected from the local weather station. Three regression models were utilized, including multiple linear regression, log- linear model (log-transformation on both response and predictor variables), and gamma-generalized linear model. The goodness-of-fit of the models were compared based on model fitting statistics such as R2, AIC, and RMSE. The results revealed that the gamma-generalized linear model was generally superior to both multiple linear regressionmodel and log-linear model for fitting the fire data. Further, the best models were selected based on the criteria that the climate variables were statistically significant at at = 0.05. The gamma best models indicated that maximum wind speed, precipitation, and days that rainfall greater than 0.1 mm had significant impacts on the area burned by the lightning-caused fire, while the mean temperature and minimum relative humidity were the .main drivers of the burned area caused by human activities. Overall, the total burned area by forest fire was significantly influenced by days that rainfall greater than 0.1 mm and minimum rela- tive humidity, indicating that the moisture condition of forest stands determine the burned area by forest fire.
基金Projects(40974077,41164004)supported by the National Natural Science Foundation of ChinaProject(2007AA06Z134)supported by the National High Technology Research and Development Program of China+2 种基金Projects(2011GXNSFA018003,0832263)supported by the Natural Science Foundation of Guangxi Province,ChinaProject supported by Program for Excellent Talents in Guangxi Higher Education Institution,ChinaProject supported by the Foundation of Guilin University of Technology,China
文摘The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.
基金the China Scholarship Council(CSC)(201903250115)the National Natural Science Foundation of China(31972515)the China Agriculture Research System of MOF and MARA(CARS-09-P31).
文摘Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the application of statistical models for evaluating the explanatory variables of space-time variation in crop NUE is still under-researched.In this study,stepwise multiple linear regression(SMLR)and Random Forest(RF)were used to evaluate the spatial and temporal variation of NUE indicators(i.e.,partial factor productivity of N(PFPN);partial nutrient balance of N(PNBN))at county scale in Northeast China(Heilongjiang,Liaoning and Jilin provinces)from 1990 to 2015.Explanatory variables included agricultural management practices,topography,climate,economy,soil and crop types.Results revealed that the PFPN was higher in the northern parts and lower in the center of the Northeast China and PNBN increased from southern to northern parts during the 1990–2015 period.The NUE indicators decreased with time in most counties during the study period.The model efficiency coefficients of the SMLR and RF models were 0.44 and 0.84 for PFPN,and 0.67 and 0.89 for PNBN,respectively.The RF model had higher relative importance of soil and climatic covariates and lower relative importance of crop covariates compared to the SMLR model.The planting area index of vegetables and beans,soil clay content,saturated water content,enhanced vegetation index in November&December,soil bulk density,and annual minimum temperature were the main explanatory variables for both NUE indicators.This is the first study to show the quantitative relative importance of explanatory variables for NUE at a county level in Northeast China using RF and SMLR.This novel study gives reference measurements to improve crop NUE which is one of the most effective means of managing N for sustainable development,ensuring food security,alleviating environmental degradation and increasing farmer’s profitability.
基金the National Natural Science Foundation of China(No.50371029
文摘The kinetics equation of deposition rate was implemented to help explain some of the mechanisms responsible for structures observed during the deposition of CoFeB films on poly-ester plastic. The plating rate of electroless CoFeB films is a function of concentration of sodium tetrahydroborate, pH of the plating bath, plating temperature and the metallic ratio. The estimated regression coefficient, confidence interval, residual error and confidence interval were confirmed by computer program. The optimal composition of the plating bath was obtained and the dynamic electromagnetic parameters of films were measured in the 2-10 GHz range. At 2 GHz, the permeability, magnetic loss of the electroless CoFeB films were 304,76.6 respectively as the concentration of reducer is 1 g·L^-1.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271075)
文摘The seed method is used for solving multiple linear systems A (i)x (i) =b (i) for 1≤i≤s, where the coefficient matrix A (i) and the right-hand side b (i) are different in general. It is known that the CG method is an effective method for symmetric coefficient matrices A (i). In this paper, the FOM method is employed to solve multiple linear sy stems when coefficient matrices are non-symmetric matrices. One of the systems is selected as the seed system which generates a Krylov subspace, then the resi duals of other systems are projected onto the generated Krylov subspace to get t he approximate solutions for the unsolved ones. The whole process is repeated u ntil all the systems are solved.
基金Supported by the Doctoral Educational Foundation of China of the Ministry of Education(20020486035)
文摘A primal-dual infeasible interior point algorithm for multiple objective linear programming(MOLP)problems was presented.In contrast to the current MOLP algorithm.moving through the interior of polytope but not confining the iterates within the feasible region in our proposed algorithm result in a solution approach that is quite different and less sensitive to problem size,so providing the potential to dramatically improve the practical computation effectiveness.
基金National Natural Science Foundations of China(No. 61074140,No. 60974094)Young Teacher Development Support Project of Shandong University of Technology,China
文摘Recognition method of traffic flow change point was put forward based on traffic flow theory and the statistical change point analysis of multiple linear regressions. The method was calibrated and tested with the field data of Liantong Road of Zibo city to verify the validity and the feasibility of the theory. The results show that change point method of multiple linear regression can make out the rule of quantitative changes in traffic flow more accurately than ordinary methods. So, the change point method can be applied to traffic information management system more effectively.
文摘In this paper we firstly select main factors relating to urbanization level of Xiantao District in Hubei Province by main element, then, make model of urbanization level by analysis of multiple liner regression, and lastly predict its urbanization level