A line-feature based SLAM algorithm is presented in this paper to resolve the conflict between the requirements of computational complexity and information-richness within the point-feature based SLAM algorithm, All o...A line-feature based SLAM algorithm is presented in this paper to resolve the conflict between the requirements of computational complexity and information-richness within the point-feature based SLAM algorithm, All operations required for building and maintaining the map, such as model-setting, data association, and state-updating, are described and formulated. This approach has been programmed and successfully tested in the simulation work, and results are shown at the end of this paper.展开更多
A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of...A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of low efficiency of detecting frontier boundary points and drift distortion in the process of map building in the traditional RRT algorithm in the autonomous detection strategy of mobile robot.Firstly,an RRT global frontier boundary point detection algorithm based on the multi-guide-node deflection strategy was put forward,which introduces the reference value of guide nodes’deflection probability into the random sampling function so that the global search tree can detect frontier boundary points towards the guide nodes according to random probability.After that,a new autonomous detection algorithm for mobile robots was proposed by combining the graph optimization-based Karto SLAM algorithm with the previously improved RRT algorithm.The algorithm simulation platform based on the Gazebo platform was built.The simulation results show that compared with the traditional RRT algorithm,the proposed RRT autonomous detection algorithm can effectively reduce the time of autonomous detection,plan the length of detection trajectory under the condition of high average detection coverage,and complete the task of autonomous detection mapping more efficiently.Finally,with the help of the ROS-based mobile robot experimental platform,the performance of the proposed algorithm was verified in the real environment of different obstacles.The experimental results show that in the actual environment of simple and complex obstacles,the proposed RRT autonomous detection algorithm was superior to the traditional RRT autonomous detection algorithm in the time of detection,length of detection trajectory,and average coverage,thus improving the efficiency and accuracy of autonomous detection.展开更多
When firefighters search inside a building that is at risk of collapse due to abandonment or disasters such as fire,they use old architectural drawings or a simple monitoring method involving a video device attached t...When firefighters search inside a building that is at risk of collapse due to abandonment or disasters such as fire,they use old architectural drawings or a simple monitoring method involving a video device attached to a robot.However,using these methods,the disaster situation inside a building at risk of collapse is difficult to detect and identify.Therefore,we investigate the generation of digital maps for a disaster site to accurately analyze internal situations.In this study,a robot combined with a low-cost camera and twodimensional light detection and ranging(2D-lidar)traverses across a floor to estimate the location of obstacles while drawing an internal map of the building.We propose an algorithm that detects the floor and then determines the possibility of entry,tracks collapses,and detects obstacles by analyzing patterns on the floor.The robot’s location is estimated,and a digital map is created based on Hector simultaneous localization and mapping(SLAM).Subsequently,the positions of obstacles are estimated based on the range values detected by 2D-lidar,and the position of the obstacles are identified on the map using the map update method in semantic SLAM.All equipment are implemented using low-specification devices,and the experiments are conducted using a low-cost robot that affords near-real-time performance.The experiments are conducted in various actual internal environments of buildings.In terms of obstacle detection performance,almost all obstacles are detected,and their positions identified on the map with a high accuracy of 89%.展开更多
FastSLAM is a popular framework which uses a Rao-Blackwellized particle filter to solve the simultaneous localization and mapping problem(SLAM). However, in this framework there are two important potential limitatio...FastSLAM is a popular framework which uses a Rao-Blackwellized particle filter to solve the simultaneous localization and mapping problem(SLAM). However, in this framework there are two important potential limitations, the particle depletion problem and the linear approximations of the nonlinear functions. To overcome these two drawbacks, this paper proposes a new FastSLAM algorithm based on revised genetic resampling and square root unscented particle filter(SR-UPF). Double roulette wheels as the selection operator, and fast Metropolis-Hastings(MH) as the mutation operator and traditional crossover are combined to form a new resampling method. Amending the particle degeneracy and keeping the particle diversity are both taken into considerations in this method. As SR-UPF propagates the sigma points through the true nonlinearity, it decreases the linearization errors. By directly transferring the square root of the state covariance matrix, SR-UPF has better numerical stability. Both simulation and experimental results demonstrate that the proposed algorithm can improve the diversity of particles, and perform well on estimation accuracy and consistency.展开更多
基于特征的视觉同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)存在实时性和鲁棒性差等问题,提出一种改进的基于四叉树的ORB特征提取方法,设计包含前后端及地图构建的机器人RGB-D SLAM算法。在前端使用四叉树方法完成...基于特征的视觉同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)存在实时性和鲁棒性差等问题,提出一种改进的基于四叉树的ORB特征提取方法,设计包含前后端及地图构建的机器人RGB-D SLAM算法。在前端使用四叉树方法完成ORB特征的均匀提取,计算描述子间汉明距离实现特征匹配。根据随机采样一致性算法思想,结合EPNP(Efficient Perspective-N-Point)和迭代最近点法求解位姿,获取多次迭代后的准确位姿。采用关键帧进行回环检测,并且基于光速法平差优化位姿图,从而构建全局一致的3D地图,达到减少累积误差的目的。通过TUM数据集和多履带式全向移动机器人进行对比验证,实验结果满足实时性和稳定性要求,证明了算法的可行性和有效性。展开更多
为了解决室内动态环境下移动机器人的准确定位问题,提出了一种融合运动检测算法的半直接法RGB-D视觉SLAM(同时定位与地图创建)算法,它由运动检测、相机位姿估计、基于TSDF (truncated signed distance function)模型的稠密地图构建3个...为了解决室内动态环境下移动机器人的准确定位问题,提出了一种融合运动检测算法的半直接法RGB-D视觉SLAM(同时定位与地图创建)算法,它由运动检测、相机位姿估计、基于TSDF (truncated signed distance function)模型的稠密地图构建3个步骤组成.首先,通过最小化图像光度误差,利用稀疏图像对齐算法实现对相机位姿的初步估计.然后,使用视觉里程计的位姿估计对图像进行运动补偿,建立基于图像块实时更新的高斯模型,依据方差变化分割出图像中的运动物体,进而剔除投影在图像运动区域的局部地图点,通过最小化重投影误差对相机位姿进行进一步优化,提升相机位姿估计精度.最后,使用相机位姿和RGB-D相机图像信息构建TSDF稠密地图,利用图像运动检测结果和地图体素块的颜色变化,完成地图在动态环境下的实时更新.实验结果表明,在室内动态环境下,本文算法能够有效提高相机位姿估计精度,实现稠密地图的实时更新,在提升系统鲁棒性的同时也提升了环境重构的准确性.展开更多
健壮的SLAM系统对机器人导航和操作有着深远的意义,因此介绍RGB-D SLAM V2系统,并对算法的数据集测试效果和真实场景的建图效果进行评估,即简要介绍SLAM技术发展的背景和意义,评估RGB-D SLAM V2系统的框架、算法设计、创新点和实际性能...健壮的SLAM系统对机器人导航和操作有着深远的意义,因此介绍RGB-D SLAM V2系统,并对算法的数据集测试效果和真实场景的建图效果进行评估,即简要介绍SLAM技术发展的背景和意义,评估RGB-D SLAM V2系统的框架、算法设计、创新点和实际性能。从实验结果可以看出,算法定位的精度基本拟合真实的运动,对环境的重现也可用于视觉观测,具有极好的可扩展性。展开更多
传统的温室作业方式依赖于人工操作,工作效率低且难以保证作业的质量和稳定性。温室自主导航系统可以实现温室内自动化导航和作业,提高温室作物的生产效率和品质。因此,设计一种定位与地图构建(Simultaneous Localization And Mapping, ...传统的温室作业方式依赖于人工操作,工作效率低且难以保证作业的质量和稳定性。温室自主导航系统可以实现温室内自动化导航和作业,提高温室作物的生产效率和品质。因此,设计一种定位与地图构建(Simultaneous Localization And Mapping, SLAM)技术下的温室自主导航系统,可利用激光雷达等传感器实时构建温室内的地图,并利用SLAM算法实现自主定位与导航。为了提高系统的鲁棒性和性能,提出了一种基于改进粒子滤波算法的姿态估计方法。试验结果表明:该温室自主导航系统能够高效准确地实现温室内的自主导航任务,为农业生产提供了一种新的自动化解决方案。展开更多
基金Supported by National Natural Science Foundation of P. R. China (60475031)
文摘A line-feature based SLAM algorithm is presented in this paper to resolve the conflict between the requirements of computational complexity and information-richness within the point-feature based SLAM algorithm, All operations required for building and maintaining the map, such as model-setting, data association, and state-updating, are described and formulated. This approach has been programmed and successfully tested in the simulation work, and results are shown at the end of this paper.
基金This research was funded by National Natural Science Foundation of China(No.62063006)Guangxi Science and Technology Major Program(No.2022AA05002)+2 种基金Key Laboratory of AI and Information Processing(Hechi University),Education Department of Guangxi Zhuang Autonomous Region(No.2022GXZDSY003)Guangxi Key Laboratory of Spatial Information and Geomatics(Guilin University of Technology)(No.21-238-21-16)Innovation Project of Guangxi Graduate Education(No.YCSW2023352).
文摘A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of low efficiency of detecting frontier boundary points and drift distortion in the process of map building in the traditional RRT algorithm in the autonomous detection strategy of mobile robot.Firstly,an RRT global frontier boundary point detection algorithm based on the multi-guide-node deflection strategy was put forward,which introduces the reference value of guide nodes’deflection probability into the random sampling function so that the global search tree can detect frontier boundary points towards the guide nodes according to random probability.After that,a new autonomous detection algorithm for mobile robots was proposed by combining the graph optimization-based Karto SLAM algorithm with the previously improved RRT algorithm.The algorithm simulation platform based on the Gazebo platform was built.The simulation results show that compared with the traditional RRT algorithm,the proposed RRT autonomous detection algorithm can effectively reduce the time of autonomous detection,plan the length of detection trajectory under the condition of high average detection coverage,and complete the task of autonomous detection mapping more efficiently.Finally,with the help of the ROS-based mobile robot experimental platform,the performance of the proposed algorithm was verified in the real environment of different obstacles.The experimental results show that in the actual environment of simple and complex obstacles,the proposed RRT autonomous detection algorithm was superior to the traditional RRT autonomous detection algorithm in the time of detection,length of detection trajectory,and average coverage,thus improving the efficiency and accuracy of autonomous detection.
基金supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(No.2020R1I1A3068274),Received by Junho Ahn.https://www.nrf.re.kr/.
文摘When firefighters search inside a building that is at risk of collapse due to abandonment or disasters such as fire,they use old architectural drawings or a simple monitoring method involving a video device attached to a robot.However,using these methods,the disaster situation inside a building at risk of collapse is difficult to detect and identify.Therefore,we investigate the generation of digital maps for a disaster site to accurately analyze internal situations.In this study,a robot combined with a low-cost camera and twodimensional light detection and ranging(2D-lidar)traverses across a floor to estimate the location of obstacles while drawing an internal map of the building.We propose an algorithm that detects the floor and then determines the possibility of entry,tracks collapses,and detects obstacles by analyzing patterns on the floor.The robot’s location is estimated,and a digital map is created based on Hector simultaneous localization and mapping(SLAM).Subsequently,the positions of obstacles are estimated based on the range values detected by 2D-lidar,and the position of the obstacles are identified on the map using the map update method in semantic SLAM.All equipment are implemented using low-specification devices,and the experiments are conducted using a low-cost robot that affords near-real-time performance.The experiments are conducted in various actual internal environments of buildings.In terms of obstacle detection performance,almost all obstacles are detected,and their positions identified on the map with a high accuracy of 89%.
基金supported by National Natural Science Foundation of China(No.61101197)Research Fund for the Doctoral Program of Higher Education of China(No.20093219120025)
文摘FastSLAM is a popular framework which uses a Rao-Blackwellized particle filter to solve the simultaneous localization and mapping problem(SLAM). However, in this framework there are two important potential limitations, the particle depletion problem and the linear approximations of the nonlinear functions. To overcome these two drawbacks, this paper proposes a new FastSLAM algorithm based on revised genetic resampling and square root unscented particle filter(SR-UPF). Double roulette wheels as the selection operator, and fast Metropolis-Hastings(MH) as the mutation operator and traditional crossover are combined to form a new resampling method. Amending the particle degeneracy and keeping the particle diversity are both taken into considerations in this method. As SR-UPF propagates the sigma points through the true nonlinearity, it decreases the linearization errors. By directly transferring the square root of the state covariance matrix, SR-UPF has better numerical stability. Both simulation and experimental results demonstrate that the proposed algorithm can improve the diversity of particles, and perform well on estimation accuracy and consistency.
文摘为了解决室内动态环境下移动机器人的准确定位问题,提出了一种融合运动检测算法的半直接法RGB-D视觉SLAM(同时定位与地图创建)算法,它由运动检测、相机位姿估计、基于TSDF (truncated signed distance function)模型的稠密地图构建3个步骤组成.首先,通过最小化图像光度误差,利用稀疏图像对齐算法实现对相机位姿的初步估计.然后,使用视觉里程计的位姿估计对图像进行运动补偿,建立基于图像块实时更新的高斯模型,依据方差变化分割出图像中的运动物体,进而剔除投影在图像运动区域的局部地图点,通过最小化重投影误差对相机位姿进行进一步优化,提升相机位姿估计精度.最后,使用相机位姿和RGB-D相机图像信息构建TSDF稠密地图,利用图像运动检测结果和地图体素块的颜色变化,完成地图在动态环境下的实时更新.实验结果表明,在室内动态环境下,本文算法能够有效提高相机位姿估计精度,实现稠密地图的实时更新,在提升系统鲁棒性的同时也提升了环境重构的准确性.
文摘健壮的SLAM系统对机器人导航和操作有着深远的意义,因此介绍RGB-D SLAM V2系统,并对算法的数据集测试效果和真实场景的建图效果进行评估,即简要介绍SLAM技术发展的背景和意义,评估RGB-D SLAM V2系统的框架、算法设计、创新点和实际性能。从实验结果可以看出,算法定位的精度基本拟合真实的运动,对环境的重现也可用于视觉观测,具有极好的可扩展性。
文摘传统的温室作业方式依赖于人工操作,工作效率低且难以保证作业的质量和稳定性。温室自主导航系统可以实现温室内自动化导航和作业,提高温室作物的生产效率和品质。因此,设计一种定位与地图构建(Simultaneous Localization And Mapping, SLAM)技术下的温室自主导航系统,可利用激光雷达等传感器实时构建温室内的地图,并利用SLAM算法实现自主定位与导航。为了提高系统的鲁棒性和性能,提出了一种基于改进粒子滤波算法的姿态估计方法。试验结果表明:该温室自主导航系统能够高效准确地实现温室内的自主导航任务,为农业生产提供了一种新的自动化解决方案。