It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not.A convenient and fast method based on line segment detector(LSD)and the least square...It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not.A convenient and fast method based on line segment detector(LSD)and the least square curve fitting to identify the rail in the image is proposed in this paper.The image in front of the train can be obtained through the camera on-board.After preprocessing,it will be divided equally along the longitudinal axis.Utilizing the characteristics of the LSD algorithm,the edges are approximated into multiple line segments.After screening the terminals of the line segments,it can generate the mathematical model of the rail in the image based on the least square.Experiments show that the algorithm in this paper can fit the rail curve accurately and has good applicability and robustness.展开更多
In smart driving for rail transit,a reliable obstacle detection system is an important guarantee for the safety of trains.Therein,the detection of the rail area directly affects the accuracy of the system to identify ...In smart driving for rail transit,a reliable obstacle detection system is an important guarantee for the safety of trains.Therein,the detection of the rail area directly affects the accuracy of the system to identify dangerous targets.Both the rail line and the lane are presented as thin line shapes in the image,but the rail scene is more complex,and the color of the rail line is more difficult to distinguish from the background.By comparison,there are already many deep learning-based lane detection algorithms,but there is a lack of public datasets and targeted deep learning detection algorithms for rail line detection.To address this,this paper constructs a rail image dataset RailwayLine and labels the rail line for the training and testing of models.This dataset contains rich rail images including single-rail,multi-rail,straight rail,curved rail,crossing rails,occlusion,blur,and different lighting conditions.To address the problem of the lack of deep learning-based rail line detection algorithms,we improve the CLRNet algorithm which has an excellent performance in lane detection,and propose the CLRNet-R algorithm for rail line detection.To address the problem of the rail line being thin and occupying fewer pixels in the image,making it difficult to distinguish from complex backgrounds,we introduce an attention mechanism to enhance global feature extraction ability and add a semantic segmentation head to enhance the features of the rail region by the binary probability of rail lines.To address the poor curve recognition performance and unsmooth output lines in the original CLRNet algorithm,we improve the weight allocation for line intersection-over-union calculation in the original framework and propose two loss functions based on local slopes to optimize the model’s local sampling point training constraints,improving the model’s fitting performance on curved rails and obtaining smooth and stable rail line detection results.Through experiments,this paper demonstrates that compared with other mainstream lane detection algorithms,the algorithm proposed in this paper has a better performance for rail line detection.展开更多
基金National Natural Science Foundation of China(No.61763023).
文摘It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not.A convenient and fast method based on line segment detector(LSD)and the least square curve fitting to identify the rail in the image is proposed in this paper.The image in front of the train can be obtained through the camera on-board.After preprocessing,it will be divided equally along the longitudinal axis.Utilizing the characteristics of the LSD algorithm,the edges are approximated into multiple line segments.After screening the terminals of the line segments,it can generate the mathematical model of the rail in the image based on the least square.Experiments show that the algorithm in this paper can fit the rail curve accurately and has good applicability and robustness.
基金the Sichuan Science and Technology Program(No.2022YFS0557)the National Natural Science Foundation of China(No.61972271)。
文摘In smart driving for rail transit,a reliable obstacle detection system is an important guarantee for the safety of trains.Therein,the detection of the rail area directly affects the accuracy of the system to identify dangerous targets.Both the rail line and the lane are presented as thin line shapes in the image,but the rail scene is more complex,and the color of the rail line is more difficult to distinguish from the background.By comparison,there are already many deep learning-based lane detection algorithms,but there is a lack of public datasets and targeted deep learning detection algorithms for rail line detection.To address this,this paper constructs a rail image dataset RailwayLine and labels the rail line for the training and testing of models.This dataset contains rich rail images including single-rail,multi-rail,straight rail,curved rail,crossing rails,occlusion,blur,and different lighting conditions.To address the problem of the lack of deep learning-based rail line detection algorithms,we improve the CLRNet algorithm which has an excellent performance in lane detection,and propose the CLRNet-R algorithm for rail line detection.To address the problem of the rail line being thin and occupying fewer pixels in the image,making it difficult to distinguish from complex backgrounds,we introduce an attention mechanism to enhance global feature extraction ability and add a semantic segmentation head to enhance the features of the rail region by the binary probability of rail lines.To address the poor curve recognition performance and unsmooth output lines in the original CLRNet algorithm,we improve the weight allocation for line intersection-over-union calculation in the original framework and propose two loss functions based on local slopes to optimize the model’s local sampling point training constraints,improving the model’s fitting performance on curved rails and obtaining smooth and stable rail line detection results.Through experiments,this paper demonstrates that compared with other mainstream lane detection algorithms,the algorithm proposed in this paper has a better performance for rail line detection.