Liver transplantation(LT)remains the optimal life-saving intervention for patients with end-stage liver disease.Despite the recent advances in LT several barriers,including organ allocation,donor-recipient matching,an...Liver transplantation(LT)remains the optimal life-saving intervention for patients with end-stage liver disease.Despite the recent advances in LT several barriers,including organ allocation,donor-recipient matching,and patient education,persist.With the growing progress of artificial intelligence,particularly large language models(LLMs)like ChatGPT,new applications have emerged in the field of LT.Current studies demonstrating usage of ChatGPT in LT include various areas of application,from clinical settings to research and education.ChatGPT usage can benefit both healthcare professionals,by decreasing the time spent on non-clinical work,but also LT recipients by providing accurate information.Future potential applications include the expanding usage of ChatGPT and other LLMs in the field of LT pathology and radiology as well as the automated creation of discharge summaries or other related paperwork.Additionally,the next models of ChatGPT might have the potential to provide more accurate patient education material with increased readability.Although ChatGPT usage presents promising applications,there are certain ethical and practical limitations.Key concerns include patient data privacy,information accuracy,misinformation possibility and lack of legal framework.Healthcare providers and policymakers should collaborate for the establishment of a controlled framework for the safe use of ChatGPT.The aim of this minireview is to summarize current literature on ChatGPT in LT,highlighting both opportunities and limitations,while also providing future possible applications.展开更多
Recently,information acquired at the canopy top,such as spectral and textural data,has been widely used to estimate plant nitrogen(N)accumulation(PNA).The response of crops to N uptake involves not only changes in hor...Recently,information acquired at the canopy top,such as spectral and textural data,has been widely used to estimate plant nitrogen(N)accumulation(PNA).The response of crops to N uptake involves not only changes in horizontal canopy top information but also an increase in vertical plant height(PH).It remains unclear whether the fusion of spectral indices with PH can improve the estimation performance of PNA models based on spectral remote sensing across different growth stages.展开更多
In this paper,a nonlinear control approach for an unstable networked plant in the presence of actuator and sensor limitations using robust right coprime factorization is proposed.The actuator is limited by upper and l...In this paper,a nonlinear control approach for an unstable networked plant in the presence of actuator and sensor limitations using robust right coprime factorization is proposed.The actuator is limited by upper and lower constraints and the sensor in the feedback loop is subjected to network-induced unknown time-varying delay and noise.With this nonlinear control method,we first employ right coprime factorization based on isomorphism and operator theory to factorize the plant,so that bounded input bounded output(BIBO)stability can be guaranteed.Next,continuous-time generalized predictive control(CGPC)is utilized for the unstable operator of the right coprime factorized plant to guarantee inner stability and enables the closed-loop dynamics of the system with predictive characteristics.Meanwhile,a second-Do F(degrees of freedom)switched controller that satisfies a perturbed Bezout identity and a robustness condition is designed.By using the CGPC controller that possesses predictive behavior and the second-Do F switched stabilizer,the overall stability of the plant subjected to actuator limitations is guaranteed.To address sensor limitations that exist in networked plants in the form of delay and noise which often cause system performance degradation,we implement an identity operator definition in the feedback loop to compensate for these adverse effects.Further,a pre-operator is designed to ensure that the plant output tracks the reference input.Finally,the effectiveness of the proposed design scheme is demonstrated by simulations.展开更多
Objective:To evaluate the effectiveness of the internal limiting membrane(ILM)flipping and covering technique in the treatment of patients with high myopic macular hole(HMMH).Methods:One hundred and two patients with ...Objective:To evaluate the effectiveness of the internal limiting membrane(ILM)flipping and covering technique in the treatment of patients with high myopic macular hole(HMMH).Methods:One hundred and two patients with HMMH who were admitted to the hospital from June 2019 to June 2024 were selected.The minimum diameter of the macular hole(MH)in all patients was≤500μm.The patients were randomly divided into two groups.The experimental group received 25G pars plana vitrectomy(PPV)combined with ILM flipping and covering technique,while the reference group received PPV combined with ILM peeling.The efficacy indicators and best corrected visual acuity levels were compared between the two groups.Results:The MH closure rate and retinal reattachment rate were higher in the experimental group than in the reference group at 3 and 6 months postoperatively(P<0.05).The best corrected visual acuity level was higher in the experimental group than in the reference group at 3 and 6 months postoperatively(P<0.05).The Chinese version of the Visual Function-Related Quality of Life Questionnaire-25(CVRQOL-25)score was higher in the experimental group than in the reference group at 3 and 6 months postoperatively(P<0.05).No serious complications were observed in both groups postoperatively,and there was no difference between the two groups(P>0.05).Conclusion:The ILM flipping and covering technique can improve the MH closure rate and retinal reattachment rate in patients with HMMH(diameter≤500μm),enhance the best corrected visual acuity level,and improve the quality of life related to visual function,with fewer postoperative complications.展开更多
This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the pre...This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the prepared surfaces are placed on top of each other and by rolling with reduction more than 50%,the bonding between layers is established.In this research,the roll bonding process was done at room temperature,without the use of lubricants and with a 70%thickness reduction.Then,the final thickness of the Ag/Al bilayer sheet reached 350μm by several stages of cold rolling.Before cold rolling,it should be noted that to decrease the hardness created due to plastic deformation,the roll-bonded samples were subjected to annealing heat treatment at 400℃for 90 min.Thus,the final samples were annealed at 200,300 and 400℃for 90 min and cooled in a furnace to examine the annealing temperature effects.The uniaxial tensile and microhardness tests measured mechanical properties.Also,to investigate the fracture mechanism,the fractography of the cross-section was examined by scanning electron microscope(SEM).To evaluate the formability of Ag/Al bilayer sheets,forming limit curves were obtained experimentally through the Nakazima test.The resistance of composites to failure due to cracking was also investigated by fracture toughness.The results showed that annealing increases the elongation and formability of the Ag/Al bilayer sheet while reduces the ultimate tensile strength and fracture toughness.However,the changing trend is not the same at different temperatures,and according to the results,the most significant effect is obtained at 300℃and aluminum layers.It was also determined that by increasing annealing temperature,the fracture mechanism from shear ductile with small and shallow dimples becomes ductile with deep cavities.展开更多
This paper deals with the monotonicity of limit wave speed c0(h)to a perturbed g KdV equation.We show the decrease of c0(h)by combining the analytic method and the numerical technique.Our results solve a special case ...This paper deals with the monotonicity of limit wave speed c0(h)to a perturbed g KdV equation.We show the decrease of c0(h)by combining the analytic method and the numerical technique.Our results solve a special case of the open question presented by Yan et al.,and the method potentially provides a way to study the monotonicity of c0(h)for general m∈N^(+).展开更多
The paper considers the methodology for a comprehensive analysis of the stability of an open pit-dump system,using limit equilibrium(LEM)and finite element(FEM)methods in the Russian CAE(computer-aided engineering)sof...The paper considers the methodology for a comprehensive analysis of the stability of an open pit-dump system,using limit equilibrium(LEM)and finite element(FEM)methods in the Russian CAE(computer-aided engineering)software Fidesys.It briefly highlights the issues of comparing limit equilibrium methods using the VNIMI(Research Institute of Geomechanics and Mine Surveying-Intersectoral Scientific Center"VNIMI")methodology and a specialized software product with numerical methods.The main focus of this study is to compare the results of the stability analysis in the volumetric model of the open pit-dump system using limit equilibrium and finite element methods in the CAE software Fidesys.It was found that,when modeling the combined operation of an open pit-dump system in complex terrain,both methods should be used,as each has its own advantages.The finite element method,for instance,has certain features that are not present in the calculations using the limit equilibrium approach.As a key scientific contribution,this paper introduces an automation program for calculating the stability of open-pit walls using the limit equilibrium method in CAE Fidesys,which was not previously integrated in the original software.The calculations performed with the use of this newly developed module were compared to those obtained from other widely used software solutions available on the market.The findings demonstrate a remarkable level of convergence in the calculation results for all relevant parameters,including the safety factor,localization,instability type,and deformation.The proposed approach i mproves the accuracy of calculati ons and ensures consistency between the higher stress design zones and the actual deformation and fracture patterns.It also enhances the ability to predict the behavior of rock mass when calculating stability parameters for facilities,both during operation and desi gn.展开更多
In this paper,we study the following pseudo-relativistic Hartree equation i∂_(t)Ψ-(|x|^(-1)*|Ψ|^(2))Ψwith(t,x)∈R×R^(3)We mainly focus on the normalized ground state solitary waves of the formΨ(t,x)=e^(itμ)...In this paper,we study the following pseudo-relativistic Hartree equation i∂_(t)Ψ-(|x|^(-1)*|Ψ|^(2))Ψwith(t,x)∈R×R^(3)We mainly focus on the normalized ground state solitary waves of the formΨ(t,x)=e^(itμ)φm(x)with||φm||_(2)^(2)=N.We investigate limit behaviors of energy and minimizer of the corresponding frinetional of this equationas m→+∞.We prove that m_(k)^(-3/2)φm_(k)→φ∞(x)in H^(-1/2(R^(3)))by energy method and lim_(m→+∞)+m^(-1)e(N)=e(N),whereφ_(m)(β∞)is a minimizer of e(N)(e(N).展开更多
Silicon limitation negatively affects the growth and metabolism of diatoms.However,its influence on the topography and mechanical properties of diatom frustules,and consequently on predation,remains unclear.We investi...Silicon limitation negatively affects the growth and metabolism of diatoms.However,its influence on the topography and mechanical properties of diatom frustules,and consequently on predation,remains unclear.We investigated how silicon limitation affects the mechanical strength of diatom frustules.Under silicon limitation,the growth rates of diatom Cylindrotheca closterium,Amphora coffeaeformis,Thalassiosira weissflogii,and Cyclotella sp.decreased by 19%,56%,42%,and 73%,respectively.Similarly,the biogenic silica content of silicon-limited C.closterium,T.weissflogii,and Cyclotella sp.decreased by 17%,11%,and 9%,respectively,whereas A.coffeaeformis showed a 63%increase.Atomic force microscopy and X-ray photoelectron spectroscopy revealed that silicon shortage reduced frustule hardness by approximately 60%and decreased condensed silica components on their surface by about 80%,except in A.coffeaeformis.Additionally,copepods consumed 20%to 600%more diatoms grown under silicon deficiency compared to those grown under Si-rich conditions,with the exception of A.coffeaeformis.These findings suggest that silicon limitation diminishes diatom populations and accelerates carbon export from diatoms to the deep sea.展开更多
As a new dynamic reactive power compensator,the grid-forming Static Var Generator(GF-SVG)can not only provide reactive power-voltage support,but also has inertial support capability.It has been experimentally deployed...As a new dynamic reactive power compensator,the grid-forming Static Var Generator(GF-SVG)can not only provide reactive power-voltage support,but also has inertial support capability.It has been experimentally deployed in many wind farms.However,studies have shown that when the three-phase short-circuit fault occurs in the wind farm,the transient overcurrent during the fault occurrence and fault clearance is suppressed,making it difficult for GF-SVG to use traditional fixed virtual impedance.Aiming at the problem,firstly,the influence of virtual reactance on control stability is analyzed using the GF-SVG’s current open-loop transfer function.Secondly,based on the existing current limitation strategies of GF-SVG,an adaptive virtual reactance current limitation strategy suitable for symmetrical faults of the power grid is proposed,which limits GF-SVG’s transient overcurrent during fault occurrence and fault clearance stage to the tolerance range of GF-SVG’s power devices.Based on the GF-SVG’s active power loop and reactive power loop small signal models,the availability of the proposed adaptive virtual reactance in suppressing the DC voltage drop of GF-SVG is analyzed,and shortening the transient overvoltage recovery time of the wind farm after the fault clearance is also discussed.Finally,electromagnetic simulation proves the effectiveness and correctness of the proposed adaptive current limitation method.展开更多
Commonly,the standards for the geometric design of roads refer to a given set of values for the friction coefficient(longitudinal and transverse friction).These"reference"values imply corresponding visibilit...Commonly,the standards for the geometric design of roads refer to a given set of values for the friction coefficient(longitudinal and transverse friction).These"reference"values imply corresponding visibility sights,curvature radii,and speed limits.Unfortunately,not only do these reference values not correspond to a given standard to measure them,but nothing is said about the decrease of the posted speed limit(variable speed limits)when roads become slippery and lanes for autonomous vehicle(AV)are concerned.Furthermore,the same assessment of the friction coefficient has plenty of uncertainties due to measurement device,temperature,location,time passed from the construction,alignment-related variables(e.g.,curve,tangent,transition curve,convexity/crests or concavity/sags,longitudinal slope,superelevation,and ruling gradient),and supplementary singularities such as joints and bridge approaches.All the issues above may harm road safety and the complexity of forensic investigations of pavements.Consequently,this study's objectives were confined to(1)carrying out friction measurements and analyzing the problem of friction decay over time;(2)setting up a method to lower the speed limits where friction decays are detected;(3)setting up a method to handle friction decays for autonomous vehicles.Results demonstrate that:(1)a power law describes how the speed limits are affected by friction;(2)for speeds up to 170 km/h,due to the lower reaction time,AV reaction distance is lower,which benefits AV traffic(lower stopping distance);(3)on the contrary,for higher values of friction and higher speeds,under the hypothesis of having the same reaction time law for non-AV(NAV)(i.e.,decreasing with the initial speed),AV speed limits become lower than NAV speed limits;(4)not only do comfort-based speed profiles for AVs bring higher braking distances,but also,in the median part(of the deceleration process),this could pose safety issues and reduce the distance between the available and the needed friction.展开更多
On July 24th, Lectra's Board of Directors, chaired by Daniel Harari, reviewed the consolidated financial statements for the first half of 2025, which have been subject to a limited review by the Statutory Auditors.
The reignition of aero-engine combustors at high altitudes poses significant challenges due to the low-temperature and low-pressure environment.A novel Long Pulse-Width Plasma Ignition(LPWPI)system has been developed ...The reignition of aero-engine combustors at high altitudes poses significant challenges due to the low-temperature and low-pressure environment.A novel Long Pulse-Width Plasma Ignition(LPWPI)system has been developed to enhance ignition performance.The LPWPI system can effectively prolong the discharge duration time,improve ignition efficacy,and increase the plasma penetration depth.Experimental comparisons with the traditional Spark Ignition(SI)system demonstrate that the LPWPI increased discharge duration to 2.03 ms,which is 45 times longer than that of the SI system,while also doubling the spark penetration depth to 24.1 mm.The LPWPI system achieved a discharge efficiency of 61.1%,significantly surpassing the SI system's efficiency of23.3%.These advancements facilitated an extension of the lean ignition boundary by approximately 22.7%to 39.3%.High-speed camera recordings reveal that the spark duration of the LPWPI system was extended to 2.1 ms,compared to 0.6 ms in the SI system.Ignition progress with LPWPI shows a sustained spark kernel without the flame residence stage observed in the SI system.The impressive performance of the LPWPI system suggests that it is a promising alternative for aero-engine ignition systems.展开更多
Two-dimensional perovskite ferroelectric which strongly couple ferroelectricity with semiconducting properties are promising candidates for optoelectronic applications.However,it is still a great challenge to fabricat...Two-dimensional perovskite ferroelectric which strongly couple ferroelectricity with semiconducting properties are promising candidates for optoelectronic applications.However,it is still a great challenge to fabricate self-powered broadband photodetectors with low detection limit.Herein,we successfully realized self-powered broadband photodetection with low detection limit by using a trilayered perovskite ferroelectric(BA)_(2)EA_(2)Pb_(3)I_(10)(1,BA=n-butylamine,EA=ethylamine).Giving to its large spontaneous polarization(5.6μC/cm^(2)),1 exhibits an open-circuit voltage of 0.25 V which provide driving force to separate carriers.Combining with its low dark current(~10^(-14)A)and narrow bandgap(Eg=1.86 e V),1 demonstrates great potential on detecting the broadband weak lights.Thus,a prominent photodetection performance with high open-off ratio(~10^(5)),outstanding responsivity(>10 m A/W),and promising detectivity(>1011Jones),as well as the low detecting limit(~nW/cm^(2))among the wide wavelength from 377 nm to637 nm was realized based on the single crystal of 1.This work demonstrates the great potential of 2D perovskite ferroelectric on self-powered broadband photodetectors.展开更多
Optical monitoring of object position and alignment with nanoscale precision is critical for ultra-precision measurement applications,such as micro/nano-fabrication,weak force sensing,and micro-scopic imaging.Traditio...Optical monitoring of object position and alignment with nanoscale precision is critical for ultra-precision measurement applications,such as micro/nano-fabrication,weak force sensing,and micro-scopic imaging.Traditional optical nanometry methods often rely on precision nanostructure fabrication,multi-beam interferometry,or complex post-processing algorithms,which can limit their practical use.In this study,we introduced a simplified and robust quantum measurement technique with an achievable resolution of 2.2 pm and an experimental demonstration of 1 nm resolution,distinguishing it from conventional interferometry,which depended on multiple reference beams.We designed a metasurface substrate with a mode-conversion function,in which an incident Gaussian beam is converted into higher-order transverse electromagnetic mode(TEM)modes.A theoretical analysis,including calculations of the Fisher information,demonstrated that the accuracy was maintained for nanoscale displacements.In conclusion,the study findings provide a new approach for precise alignment and metrology of nanofabrication and other advanced applications.展开更多
In this paper,we investigate the propagation of chaos for solutions to the Liouville equation derived from the Linear-Formation particle model.By imposing certain conditions,we derive the rate of convergence between t...In this paper,we investigate the propagation of chaos for solutions to the Liouville equation derived from the Linear-Formation particle model.By imposing certain conditions,we derive the rate of convergence between the k-tensor product f_(t)^(■k)of the solution to be Linear-Formation kinetic equation and the k-marginal f_(N,k)^(t)of the solution to the Liouville equation corresponding to the Linear-Formation particle model.Specifically,the following estimate holds in terms of p-Wasserstein(1≤p<∞)distance W_(p)^(p)(f_(t)^(■k),f_(N,k)^(t))≤C_(1)k/N^(min(p/2,1))(1+t^(p))e^(C_(2)^(t)),1≤k≤N.展开更多
A feasible criterion was established to determine the lower size limit of raw coal(d_(pRm))for efficient beneficiation in the air-fluidized bed with magnetite particles.The feasibility of using small magnetite particl...A feasible criterion was established to determine the lower size limit of raw coal(d_(pRm))for efficient beneficiation in the air-fluidized bed with magnetite particles.The feasibility of using small magnetite particles to accommodate the fine raw coal was demonstrated from the experimental perspective.The minimum size for the magnetite particles to be fluidized smoothly was clarified as 47.1μm,which corresponded to the border between Geldart-B and-A groups.Since the gangue and coal components in the raw coal were crushed into the same size,d_(pRm)depended on the greater one between d_(pGm)(minimum size required for the gangue particles to sink towards the bottom)and d_(pCm)(minimum size required for the coal particles to float towards the top).dpcm was determined as 259μm by supposing that provided the gangue particles accumulated in the lower half bed,they could be potentially extracted from the bottom.On the other hand,it was observed that the coal particles could always accumulate in the upper half bed.Under such circumstances,dpcm was revealed as 9.8μm since finer coal particles would be blown out by air before the 47.1μm sized magnetite particles became fluidized.Eventually,dpRm was clarified as 259μm,agreeing with the common view that raw coal coarser than 6 mm could be effectively beneficiated in the air-fluidized bed with magnetite particles.Additionally,the difficulty in beneficiating the fine raw coal was revealed to arise more from the remixing of sorted gangue particles than that of separated coal particles.展开更多
Accurately predicting the powder factor during blasting is essential for sustainable production planning in low-grade mines.This research presents a method for predicting powder factor based on the heterogeneity of ro...Accurately predicting the powder factor during blasting is essential for sustainable production planning in low-grade mines.This research presents a method for predicting powder factor based on the heterogeneity of rock mass rating(RMR).Considering a low-grade metal mine as an example,this study exploited geostatistical methods to obtain independent RMR for each block unit.A three-dimensional spatial distribution model for the powder factor was developed on the basis of the relationships between the RMR and the powder factor.Subsequently,models for blasting cost and mining value were built and employed to optimize the open-pit limit.The multi-variable model based on the RMR performed well in predicting the powder factor,achieving a correlation coefficient of 0.88(root mean square error of 4.3)and considerably outperforming the uniaxial compressive strength model.After model optimization,the mean size and standard deviation of the fragments in the blast pile decreased by 8.5%and 35.1%,respectively,whereas the boulder yield and its standard deviation decreased by 33.3%and 58.8%,respectively.Additionally,optimizing the open-pit limit using this method reduced the amount of rock,increased the amount of ore,and lowered blasting costs,thereby enhancing the economic efficiency of the mine.This study provides valuable insights for blasting design and mining decisions,demonstrating the advantages and potential applications of powder factor prediction based on the heterogeneity of rock mass quality.展开更多
Tibetan alpine steppes are large and sensitive terrestrial carbon(C)reservoirs that are experiencing desertification due to global change and overgrazing,which can lead to stronger resource limitations for both above-...Tibetan alpine steppes are large and sensitive terrestrial carbon(C)reservoirs that are experiencing desertification due to global change and overgrazing,which can lead to stronger resource limitations for both above-and belowground communities.Soil nutrients,especially nitrogen(N)and phosphorus(P),are the crucial resources for plant growth and microbial metabolism.However,whether both plant and soil microbial communities in the degraded alpine steppes are limited by these soil nutrients remains unclear,which limits our understanding of the mechanisms of desertification and subsequent ecosystem restoration.Here,we evaluated potential nutrient limitations of the plant and soil microbial communities in the alpine steppe across five stages of desertification using stoichiometry-based approaches.Our results showed that soil microbial metabolism was mainly limited by C and P,and the plant N limitation and microbial C limitation were intensified while the microbial P limitation was relieved during desertification.Plant-soil-microbe interactions had significant impacts on the microbial C and P limitations,explaining 72 and 61%of the variation,respectively.Specifically,desertification ultimately affected microbial metabolic limitations by regulating soil pH,soil nutrients,and the plant N limitation.Moreover,the microbial C limitation further reduced microbial C use efficiency(CUE)with desertification,which is detrimental for organic C retention in the degraded soil.Overall,this study revealed that microbial metabolic limitations through plant-microbe interactions were the key drivers affecting soil microbial CUE,and it provided insights that can advance our knowledge of the microbial regulation of nutrient cycles and C sequestration.展开更多
Fiber Metal Laminates(FMLs),as high-performance composite materials,demonstrate exceptional potential in a wide range of applications,such as aeronautical and astronautical industries.However,the traditional cured FML...Fiber Metal Laminates(FMLs),as high-performance composite materials,demonstrate exceptional potential in a wide range of applications,such as aeronautical and astronautical industries.However,the traditional cured FMLs possess complex interlayer stresses and low forming limits,restricting further promotion and application of FMLs.Low-constraint FMLs exhibit a lower forming resistance and better formability due to no curing during the forming process;however,the formation mechanism and response are not clear.This paper presents the Forming Limit Diagram(FLD)of low-constraint GLARE(glass fiber reinforced aluminum laminates)based on the forming limit test,and compares it with the conventionally cured laminates to evaluate the differences in the forming limit.In addition,combined with the analysis of failure mechanism and micro-deformation mechanism of specimens,the influence of different temperatures(20–80℃)and forming states(width)on the deformation performance of laminates is further explored.The results reveal that the forming limit curve of low-constraint laminates shifts up with the increase of temperature,the forming limit initially increases with the increase of width,then followed by a gradual decrease,and the maximum principal strain of low-constraint laminates is increased by 29% at 80℃ compared to 20℃.The cured laminate has a principal strain range of 0–0.02,while the low-constraint laminates have a principal strain range of 0.03–0.14.Compared with cured laminates,low-constraint laminates possess a higher forming limit due to the improvement in deformable degree between layers by resin flow and fiber slippage,which enhances their formability.This study is expected to serve as a reference for establishing forming limit criteria and optimizing forming schemes for low-constraint laminates.展开更多
文摘Liver transplantation(LT)remains the optimal life-saving intervention for patients with end-stage liver disease.Despite the recent advances in LT several barriers,including organ allocation,donor-recipient matching,and patient education,persist.With the growing progress of artificial intelligence,particularly large language models(LLMs)like ChatGPT,new applications have emerged in the field of LT.Current studies demonstrating usage of ChatGPT in LT include various areas of application,from clinical settings to research and education.ChatGPT usage can benefit both healthcare professionals,by decreasing the time spent on non-clinical work,but also LT recipients by providing accurate information.Future potential applications include the expanding usage of ChatGPT and other LLMs in the field of LT pathology and radiology as well as the automated creation of discharge summaries or other related paperwork.Additionally,the next models of ChatGPT might have the potential to provide more accurate patient education material with increased readability.Although ChatGPT usage presents promising applications,there are certain ethical and practical limitations.Key concerns include patient data privacy,information accuracy,misinformation possibility and lack of legal framework.Healthcare providers and policymakers should collaborate for the establishment of a controlled framework for the safe use of ChatGPT.The aim of this minireview is to summarize current literature on ChatGPT in LT,highlighting both opportunities and limitations,while also providing future possible applications.
基金supported by the National Key Research and Development Plan Project Sub-Topic of China(Grant Nos.2022YFD1901500 and 2022YFD1901505-07)the National Natural Science Foundation of China(Grant No.32260531)+1 种基金the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province,China(Grant No.Qiankehezhongyindi[2023]8)the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions,China(Grant No.Qianjiaoji[2023]007).
文摘Recently,information acquired at the canopy top,such as spectral and textural data,has been widely used to estimate plant nitrogen(N)accumulation(PNA).The response of crops to N uptake involves not only changes in horizontal canopy top information but also an increase in vertical plant height(PH).It remains unclear whether the fusion of spectral indices with PH can improve the estimation performance of PNA models based on spectral remote sensing across different growth stages.
文摘In this paper,a nonlinear control approach for an unstable networked plant in the presence of actuator and sensor limitations using robust right coprime factorization is proposed.The actuator is limited by upper and lower constraints and the sensor in the feedback loop is subjected to network-induced unknown time-varying delay and noise.With this nonlinear control method,we first employ right coprime factorization based on isomorphism and operator theory to factorize the plant,so that bounded input bounded output(BIBO)stability can be guaranteed.Next,continuous-time generalized predictive control(CGPC)is utilized for the unstable operator of the right coprime factorized plant to guarantee inner stability and enables the closed-loop dynamics of the system with predictive characteristics.Meanwhile,a second-Do F(degrees of freedom)switched controller that satisfies a perturbed Bezout identity and a robustness condition is designed.By using the CGPC controller that possesses predictive behavior and the second-Do F switched stabilizer,the overall stability of the plant subjected to actuator limitations is guaranteed.To address sensor limitations that exist in networked plants in the form of delay and noise which often cause system performance degradation,we implement an identity operator definition in the feedback loop to compensate for these adverse effects.Further,a pre-operator is designed to ensure that the plant output tracks the reference input.Finally,the effectiveness of the proposed design scheme is demonstrated by simulations.
文摘Objective:To evaluate the effectiveness of the internal limiting membrane(ILM)flipping and covering technique in the treatment of patients with high myopic macular hole(HMMH).Methods:One hundred and two patients with HMMH who were admitted to the hospital from June 2019 to June 2024 were selected.The minimum diameter of the macular hole(MH)in all patients was≤500μm.The patients were randomly divided into two groups.The experimental group received 25G pars plana vitrectomy(PPV)combined with ILM flipping and covering technique,while the reference group received PPV combined with ILM peeling.The efficacy indicators and best corrected visual acuity levels were compared between the two groups.Results:The MH closure rate and retinal reattachment rate were higher in the experimental group than in the reference group at 3 and 6 months postoperatively(P<0.05).The best corrected visual acuity level was higher in the experimental group than in the reference group at 3 and 6 months postoperatively(P<0.05).The Chinese version of the Visual Function-Related Quality of Life Questionnaire-25(CVRQOL-25)score was higher in the experimental group than in the reference group at 3 and 6 months postoperatively(P<0.05).No serious complications were observed in both groups postoperatively,and there was no difference between the two groups(P>0.05).Conclusion:The ILM flipping and covering technique can improve the MH closure rate and retinal reattachment rate in patients with HMMH(diameter≤500μm),enhance the best corrected visual acuity level,and improve the quality of life related to visual function,with fewer postoperative complications.
基金Project(4013311)supported by the National Science Foundation of Iran(INSF)。
文摘This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the prepared surfaces are placed on top of each other and by rolling with reduction more than 50%,the bonding between layers is established.In this research,the roll bonding process was done at room temperature,without the use of lubricants and with a 70%thickness reduction.Then,the final thickness of the Ag/Al bilayer sheet reached 350μm by several stages of cold rolling.Before cold rolling,it should be noted that to decrease the hardness created due to plastic deformation,the roll-bonded samples were subjected to annealing heat treatment at 400℃for 90 min.Thus,the final samples were annealed at 200,300 and 400℃for 90 min and cooled in a furnace to examine the annealing temperature effects.The uniaxial tensile and microhardness tests measured mechanical properties.Also,to investigate the fracture mechanism,the fractography of the cross-section was examined by scanning electron microscope(SEM).To evaluate the formability of Ag/Al bilayer sheets,forming limit curves were obtained experimentally through the Nakazima test.The resistance of composites to failure due to cracking was also investigated by fracture toughness.The results showed that annealing increases the elongation and formability of the Ag/Al bilayer sheet while reduces the ultimate tensile strength and fracture toughness.However,the changing trend is not the same at different temperatures,and according to the results,the most significant effect is obtained at 300℃and aluminum layers.It was also determined that by increasing annealing temperature,the fracture mechanism from shear ductile with small and shallow dimples becomes ductile with deep cavities.
基金Supported by the National Natural Science Foundation of China(12071162)the Natural Science Foundation of Fujian Province(2021J01302)the Fundamental Research Funds for the Central Universities(ZQN-802)。
文摘This paper deals with the monotonicity of limit wave speed c0(h)to a perturbed g KdV equation.We show the decrease of c0(h)by combining the analytic method and the numerical technique.Our results solve a special case of the open question presented by Yan et al.,and the method potentially provides a way to study the monotonicity of c0(h)for general m∈N^(+).
文摘The paper considers the methodology for a comprehensive analysis of the stability of an open pit-dump system,using limit equilibrium(LEM)and finite element(FEM)methods in the Russian CAE(computer-aided engineering)software Fidesys.It briefly highlights the issues of comparing limit equilibrium methods using the VNIMI(Research Institute of Geomechanics and Mine Surveying-Intersectoral Scientific Center"VNIMI")methodology and a specialized software product with numerical methods.The main focus of this study is to compare the results of the stability analysis in the volumetric model of the open pit-dump system using limit equilibrium and finite element methods in the CAE software Fidesys.It was found that,when modeling the combined operation of an open pit-dump system in complex terrain,both methods should be used,as each has its own advantages.The finite element method,for instance,has certain features that are not present in the calculations using the limit equilibrium approach.As a key scientific contribution,this paper introduces an automation program for calculating the stability of open-pit walls using the limit equilibrium method in CAE Fidesys,which was not previously integrated in the original software.The calculations performed with the use of this newly developed module were compared to those obtained from other widely used software solutions available on the market.The findings demonstrate a remarkable level of convergence in the calculation results for all relevant parameters,including the safety factor,localization,instability type,and deformation.The proposed approach i mproves the accuracy of calculati ons and ensures consistency between the higher stress design zones and the actual deformation and fracture patterns.It also enhances the ability to predict the behavior of rock mass when calculating stability parameters for facilities,both during operation and desi gn.
文摘In this paper,we study the following pseudo-relativistic Hartree equation i∂_(t)Ψ-(|x|^(-1)*|Ψ|^(2))Ψwith(t,x)∈R×R^(3)We mainly focus on the normalized ground state solitary waves of the formΨ(t,x)=e^(itμ)φm(x)with||φm||_(2)^(2)=N.We investigate limit behaviors of energy and minimizer of the corresponding frinetional of this equationas m→+∞.We prove that m_(k)^(-3/2)φm_(k)→φ∞(x)in H^(-1/2(R^(3)))by energy method and lim_(m→+∞)+m^(-1)e(N)=e(N),whereφ_(m)(β∞)is a minimizer of e(N)(e(N).
基金Supported by the National Natural Science Foundation of China(Nos.U 23 A 2048,42376152,42076148)the Special Program of Key Sectors in Guangdong Universities(Nos.2022 ZDZX 4040,2023 KCXTD 028)。
文摘Silicon limitation negatively affects the growth and metabolism of diatoms.However,its influence on the topography and mechanical properties of diatom frustules,and consequently on predation,remains unclear.We investigated how silicon limitation affects the mechanical strength of diatom frustules.Under silicon limitation,the growth rates of diatom Cylindrotheca closterium,Amphora coffeaeformis,Thalassiosira weissflogii,and Cyclotella sp.decreased by 19%,56%,42%,and 73%,respectively.Similarly,the biogenic silica content of silicon-limited C.closterium,T.weissflogii,and Cyclotella sp.decreased by 17%,11%,and 9%,respectively,whereas A.coffeaeformis showed a 63%increase.Atomic force microscopy and X-ray photoelectron spectroscopy revealed that silicon shortage reduced frustule hardness by approximately 60%and decreased condensed silica components on their surface by about 80%,except in A.coffeaeformis.Additionally,copepods consumed 20%to 600%more diatoms grown under silicon deficiency compared to those grown under Si-rich conditions,with the exception of A.coffeaeformis.These findings suggest that silicon limitation diminishes diatom populations and accelerates carbon export from diatoms to the deep sea.
基金supported by the National Natural Science Foundation of China under Grant 52077030.
文摘As a new dynamic reactive power compensator,the grid-forming Static Var Generator(GF-SVG)can not only provide reactive power-voltage support,but also has inertial support capability.It has been experimentally deployed in many wind farms.However,studies have shown that when the three-phase short-circuit fault occurs in the wind farm,the transient overcurrent during the fault occurrence and fault clearance is suppressed,making it difficult for GF-SVG to use traditional fixed virtual impedance.Aiming at the problem,firstly,the influence of virtual reactance on control stability is analyzed using the GF-SVG’s current open-loop transfer function.Secondly,based on the existing current limitation strategies of GF-SVG,an adaptive virtual reactance current limitation strategy suitable for symmetrical faults of the power grid is proposed,which limits GF-SVG’s transient overcurrent during fault occurrence and fault clearance stage to the tolerance range of GF-SVG’s power devices.Based on the GF-SVG’s active power loop and reactive power loop small signal models,the availability of the proposed adaptive virtual reactance in suppressing the DC voltage drop of GF-SVG is analyzed,and shortening the transient overvoltage recovery time of the wind farm after the fault clearance is also discussed.Finally,electromagnetic simulation proves the effectiveness and correctness of the proposed adaptive current limitation method.
文摘Commonly,the standards for the geometric design of roads refer to a given set of values for the friction coefficient(longitudinal and transverse friction).These"reference"values imply corresponding visibility sights,curvature radii,and speed limits.Unfortunately,not only do these reference values not correspond to a given standard to measure them,but nothing is said about the decrease of the posted speed limit(variable speed limits)when roads become slippery and lanes for autonomous vehicle(AV)are concerned.Furthermore,the same assessment of the friction coefficient has plenty of uncertainties due to measurement device,temperature,location,time passed from the construction,alignment-related variables(e.g.,curve,tangent,transition curve,convexity/crests or concavity/sags,longitudinal slope,superelevation,and ruling gradient),and supplementary singularities such as joints and bridge approaches.All the issues above may harm road safety and the complexity of forensic investigations of pavements.Consequently,this study's objectives were confined to(1)carrying out friction measurements and analyzing the problem of friction decay over time;(2)setting up a method to lower the speed limits where friction decays are detected;(3)setting up a method to handle friction decays for autonomous vehicles.Results demonstrate that:(1)a power law describes how the speed limits are affected by friction;(2)for speeds up to 170 km/h,due to the lower reaction time,AV reaction distance is lower,which benefits AV traffic(lower stopping distance);(3)on the contrary,for higher values of friction and higher speeds,under the hypothesis of having the same reaction time law for non-AV(NAV)(i.e.,decreasing with the initial speed),AV speed limits become lower than NAV speed limits;(4)not only do comfort-based speed profiles for AVs bring higher braking distances,but also,in the median part(of the deceleration process),this could pose safety issues and reduce the distance between the available and the needed friction.
文摘On July 24th, Lectra's Board of Directors, chaired by Daniel Harari, reviewed the consolidated financial statements for the first half of 2025, which have been subject to a limited review by the Statutory Auditors.
基金co-supported by the National Natural Science Foundation of China(Nos.52376138 and 52025064)the Science Center for Gas Turbine Project,China(No.P2022B-Ⅱ-018-001)the Foundation Research Project,China(No.1002TJA22010)。
文摘The reignition of aero-engine combustors at high altitudes poses significant challenges due to the low-temperature and low-pressure environment.A novel Long Pulse-Width Plasma Ignition(LPWPI)system has been developed to enhance ignition performance.The LPWPI system can effectively prolong the discharge duration time,improve ignition efficacy,and increase the plasma penetration depth.Experimental comparisons with the traditional Spark Ignition(SI)system demonstrate that the LPWPI increased discharge duration to 2.03 ms,which is 45 times longer than that of the SI system,while also doubling the spark penetration depth to 24.1 mm.The LPWPI system achieved a discharge efficiency of 61.1%,significantly surpassing the SI system's efficiency of23.3%.These advancements facilitated an extension of the lean ignition boundary by approximately 22.7%to 39.3%.High-speed camera recordings reveal that the spark duration of the LPWPI system was extended to 2.1 ms,compared to 0.6 ms in the SI system.Ignition progress with LPWPI shows a sustained spark kernel without the flame residence stage observed in the SI system.The impressive performance of the LPWPI system suggests that it is a promising alternative for aero-engine ignition systems.
基金financially supported by the National Natural Science Foundation of China(Nos.22435005,22193042,21921001,22305105,52202194,22201284)Natural Science Foundation of Jiangxi Province(No.20224BAB213003)+1 种基金the Natural Science Foundation of Fujian Province(No.2023J05076)Jiangxi Provincial Education Department Science and Technology Research Foundation(No.GJJ2200384)。
文摘Two-dimensional perovskite ferroelectric which strongly couple ferroelectricity with semiconducting properties are promising candidates for optoelectronic applications.However,it is still a great challenge to fabricate self-powered broadband photodetectors with low detection limit.Herein,we successfully realized self-powered broadband photodetection with low detection limit by using a trilayered perovskite ferroelectric(BA)_(2)EA_(2)Pb_(3)I_(10)(1,BA=n-butylamine,EA=ethylamine).Giving to its large spontaneous polarization(5.6μC/cm^(2)),1 exhibits an open-circuit voltage of 0.25 V which provide driving force to separate carriers.Combining with its low dark current(~10^(-14)A)and narrow bandgap(Eg=1.86 e V),1 demonstrates great potential on detecting the broadband weak lights.Thus,a prominent photodetection performance with high open-off ratio(~10^(5)),outstanding responsivity(>10 m A/W),and promising detectivity(>1011Jones),as well as the low detecting limit(~nW/cm^(2))among the wide wavelength from 377 nm to637 nm was realized based on the single crystal of 1.This work demonstrates the great potential of 2D perovskite ferroelectric on self-powered broadband photodetectors.
基金supported by the West Light Project,CAS(xbzg-zdsys-202206)the National Key Research and Development Program of China(2021YFA1401003)+1 种基金the National Natural Science Foundation of China(NSFC)(62222513,U24A6010,and U24A20317)the Sichuan Engineering Research Center of Digital Materials.
文摘Optical monitoring of object position and alignment with nanoscale precision is critical for ultra-precision measurement applications,such as micro/nano-fabrication,weak force sensing,and micro-scopic imaging.Traditional optical nanometry methods often rely on precision nanostructure fabrication,multi-beam interferometry,or complex post-processing algorithms,which can limit their practical use.In this study,we introduced a simplified and robust quantum measurement technique with an achievable resolution of 2.2 pm and an experimental demonstration of 1 nm resolution,distinguishing it from conventional interferometry,which depended on multiple reference beams.We designed a metasurface substrate with a mode-conversion function,in which an incident Gaussian beam is converted into higher-order transverse electromagnetic mode(TEM)modes.A theoretical analysis,including calculations of the Fisher information,demonstrated that the accuracy was maintained for nanoscale displacements.In conclusion,the study findings provide a new approach for precise alignment and metrology of nanofabrication and other advanced applications.
基金supported by the Natural Science Foundation of Hunan Province(2022JJ30655)the National Natural Science Foundation of China(12371180)the Training Program for Excellent Young Innovators of Changsha(kq2305046)。
文摘In this paper,we investigate the propagation of chaos for solutions to the Liouville equation derived from the Linear-Formation particle model.By imposing certain conditions,we derive the rate of convergence between the k-tensor product f_(t)^(■k)of the solution to be Linear-Formation kinetic equation and the k-marginal f_(N,k)^(t)of the solution to the Liouville equation corresponding to the Linear-Formation particle model.Specifically,the following estimate holds in terms of p-Wasserstein(1≤p<∞)distance W_(p)^(p)(f_(t)^(■k),f_(N,k)^(t))≤C_(1)k/N^(min(p/2,1))(1+t^(p))e^(C_(2)^(t)),1≤k≤N.
基金supported by Shandong Provincial Natural Science Foundation(ZR2023MB038)Youth Innovation Team Program of Shandong Higher Education Institution(2022KJ156)。
文摘A feasible criterion was established to determine the lower size limit of raw coal(d_(pRm))for efficient beneficiation in the air-fluidized bed with magnetite particles.The feasibility of using small magnetite particles to accommodate the fine raw coal was demonstrated from the experimental perspective.The minimum size for the magnetite particles to be fluidized smoothly was clarified as 47.1μm,which corresponded to the border between Geldart-B and-A groups.Since the gangue and coal components in the raw coal were crushed into the same size,d_(pRm)depended on the greater one between d_(pGm)(minimum size required for the gangue particles to sink towards the bottom)and d_(pCm)(minimum size required for the coal particles to float towards the top).dpcm was determined as 259μm by supposing that provided the gangue particles accumulated in the lower half bed,they could be potentially extracted from the bottom.On the other hand,it was observed that the coal particles could always accumulate in the upper half bed.Under such circumstances,dpcm was revealed as 9.8μm since finer coal particles would be blown out by air before the 47.1μm sized magnetite particles became fluidized.Eventually,dpRm was clarified as 259μm,agreeing with the common view that raw coal coarser than 6 mm could be effectively beneficiated in the air-fluidized bed with magnetite particles.Additionally,the difficulty in beneficiating the fine raw coal was revealed to arise more from the remixing of sorted gangue particles than that of separated coal particles.
基金supported by the National Key Research and Development Program of China(No.2022YFC2903902)the National Natural Science Foundation of China(Nos.52204080and 52174070)the Fundamental Research Funds for the Central Universities of China(No.2023GFYD17)。
文摘Accurately predicting the powder factor during blasting is essential for sustainable production planning in low-grade mines.This research presents a method for predicting powder factor based on the heterogeneity of rock mass rating(RMR).Considering a low-grade metal mine as an example,this study exploited geostatistical methods to obtain independent RMR for each block unit.A three-dimensional spatial distribution model for the powder factor was developed on the basis of the relationships between the RMR and the powder factor.Subsequently,models for blasting cost and mining value were built and employed to optimize the open-pit limit.The multi-variable model based on the RMR performed well in predicting the powder factor,achieving a correlation coefficient of 0.88(root mean square error of 4.3)and considerably outperforming the uniaxial compressive strength model.After model optimization,the mean size and standard deviation of the fragments in the blast pile decreased by 8.5%and 35.1%,respectively,whereas the boulder yield and its standard deviation decreased by 33.3%and 58.8%,respectively.Additionally,optimizing the open-pit limit using this method reduced the amount of rock,increased the amount of ore,and lowered blasting costs,thereby enhancing the economic efficiency of the mine.This study provides valuable insights for blasting design and mining decisions,demonstrating the advantages and potential applications of powder factor prediction based on the heterogeneity of rock mass quality.
基金supported by the National Key Research and Development Program of China(2023YFF1304304)。
文摘Tibetan alpine steppes are large and sensitive terrestrial carbon(C)reservoirs that are experiencing desertification due to global change and overgrazing,which can lead to stronger resource limitations for both above-and belowground communities.Soil nutrients,especially nitrogen(N)and phosphorus(P),are the crucial resources for plant growth and microbial metabolism.However,whether both plant and soil microbial communities in the degraded alpine steppes are limited by these soil nutrients remains unclear,which limits our understanding of the mechanisms of desertification and subsequent ecosystem restoration.Here,we evaluated potential nutrient limitations of the plant and soil microbial communities in the alpine steppe across five stages of desertification using stoichiometry-based approaches.Our results showed that soil microbial metabolism was mainly limited by C and P,and the plant N limitation and microbial C limitation were intensified while the microbial P limitation was relieved during desertification.Plant-soil-microbe interactions had significant impacts on the microbial C and P limitations,explaining 72 and 61%of the variation,respectively.Specifically,desertification ultimately affected microbial metabolic limitations by regulating soil pH,soil nutrients,and the plant N limitation.Moreover,the microbial C limitation further reduced microbial C use efficiency(CUE)with desertification,which is detrimental for organic C retention in the degraded soil.Overall,this study revealed that microbial metabolic limitations through plant-microbe interactions were the key drivers affecting soil microbial CUE,and it provided insights that can advance our knowledge of the microbial regulation of nutrient cycles and C sequestration.
基金supported by the National Natural Science Fund of China(Nos.52005153,12227801,32300666,12072005,U23A2607)the Tianjin"Project+Team"Key Training Program,China(No.XC202052)+4 种基金the Key Program of Research and Development of Hebei Province,China(Nos.202030507040009,23311812D)the Natural Science Foundation of Hebei Province,China(No.E2023202183)the Project of High-Level Team Construction Introduction of Hebei Province,China(No.244A7620D)the Research Cooperation Project of Universities Stationed in Hebei Province and Shijiazhuang City,China(No.241080114A)Hebei Province Military-Civilian Integration Science and Technology Innovation Project,China(No.SJMYF2022X15)。
文摘Fiber Metal Laminates(FMLs),as high-performance composite materials,demonstrate exceptional potential in a wide range of applications,such as aeronautical and astronautical industries.However,the traditional cured FMLs possess complex interlayer stresses and low forming limits,restricting further promotion and application of FMLs.Low-constraint FMLs exhibit a lower forming resistance and better formability due to no curing during the forming process;however,the formation mechanism and response are not clear.This paper presents the Forming Limit Diagram(FLD)of low-constraint GLARE(glass fiber reinforced aluminum laminates)based on the forming limit test,and compares it with the conventionally cured laminates to evaluate the differences in the forming limit.In addition,combined with the analysis of failure mechanism and micro-deformation mechanism of specimens,the influence of different temperatures(20–80℃)and forming states(width)on the deformation performance of laminates is further explored.The results reveal that the forming limit curve of low-constraint laminates shifts up with the increase of temperature,the forming limit initially increases with the increase of width,then followed by a gradual decrease,and the maximum principal strain of low-constraint laminates is increased by 29% at 80℃ compared to 20℃.The cured laminate has a principal strain range of 0–0.02,while the low-constraint laminates have a principal strain range of 0.03–0.14.Compared with cured laminates,low-constraint laminates possess a higher forming limit due to the improvement in deformable degree between layers by resin flow and fiber slippage,which enhances their formability.This study is expected to serve as a reference for establishing forming limit criteria and optimizing forming schemes for low-constraint laminates.