期刊文献+
共找到14,245篇文章
< 1 2 250 >
每页显示 20 50 100
Substantially improved room-temperature tensile ductility in lightweight refractory Ti-V-Zr-Nb medium entropy alloys by tuning Ti and V content 被引量:2
1
作者 Yuefei Jia Gengchen Li +6 位作者 Chang Ren Yongkun Mu Kang Sun Shiwei Wu Xilei Bian Yandong Jia Gang Wang 《Journal of Materials Science & Technology》 2025年第3期234-247,共14页
Lightweight high/medium-entropy alloys(H/MEAs)possess attractive properties such as high strength-to-weight ratios,however,their limited room-temperature tensile ductility hinders their widespread engi-neering impleme... Lightweight high/medium-entropy alloys(H/MEAs)possess attractive properties such as high strength-to-weight ratios,however,their limited room-temperature tensile ductility hinders their widespread engi-neering implementation,for instance in aerospace structural components.This work achieved a transfor-mative improvement of room-temperature tensile ductility in Ti-V-Zr-Nb MEAs with densities of 5.4-6.5 g/cm3,via ingenious composition modulation.Through the systematic co-adjustment of Ti and V contents,an intrinsic ductility mechanism was unveiled,manifested by a transition from predominant intergranular brittle fracture to pervasive ductile dimpled rupture.Notably,the modulated deformation mechanisms evolved from solitary slip toward collaborative multiple slip modes,without significantly compromising strength.Compared to equimolar Ti-V-Zr-Nb,a(Ti1.5V)3ZrNb composition demonstrated an impressive 360%improvement in elongation while sustaining a high yield strength of around 800 MPa.Increasing Ti and V not only purified the grain boundaries by reducing detrimental phases,but also tai-lored the deformation dislocation configurations.These insights expanded the applicability of lightweight HEAs to areas demanding combined high strength and ductility. 展开更多
关键词 DUCTILITY lightweight high-entropy alloys High strength Composition modulation
原文传递
Microstructure,phase stability,and mechanical properties of Al-Li-Mg-Ti-M(M=Zn,Zr,V) lightweight high-entropy alloys 被引量:1
2
作者 Quan DONG Meng LI +1 位作者 Yu-fei ZHANG Jing ZHANG 《Transactions of Nonferrous Metals Society of China》 2025年第6期1742-1757,共16页
The microstructural evolution,phase stability,and mechanical properties of Al-Li-Mg-Ti-M(M=Zn,Zr,V)lightweight high-entropy alloys(LW-HEAs)were investigated.The LW-HEAs with three components,Al_(20)Li_(20)Mg_(10)-Ti_(... The microstructural evolution,phase stability,and mechanical properties of Al-Li-Mg-Ti-M(M=Zn,Zr,V)lightweight high-entropy alloys(LW-HEAs)were investigated.The LW-HEAs with three components,Al_(20)Li_(20)Mg_(10)-Ti_(40)Zn_(10)(#Zn),Al_(20)Li_(20)Mg_(10)Ti_(30)Zr_(20)(#Zr),and Al_(20)Li_(20)Mg_(10)Ti_(30)V_(20)(#V),were designed according to the thermo-dynamic design criteria of HEA,and prepared via a combination process of mechanical alloying and cold-press sintering.The effects of alloy composition and sintering temperature on the microstructure and mechanical properties of the LW-HEAs were studied.The results show that the as-milled Al-Li-Mg-Ti-M(M=Zn,Zr,V)LW-HEAs form a simple structure with HCP-type solid solution as the primary phase,a dual-HCP type solid solution phase,and a BCC phase,respectively.After cold-press sintering,the#Zn and#V alloys undergo obvious phase transformation;while the#Zr alloy with dual-HCP phases exhibits the best phase stability during heat treatment.The#V-750°C alloy demonstrates the maximum hardness and specific strength of HV 595.2 and 625 MPa∙cm3/g,respectively,under the combined effect of solid solution strengthening of BCC phase and precipitation strengthening ofβ-AlTi_(3).Moreover,the#Zr-650°C,#Zr-750°C,and#Zn-650°C alloys are expected to have excellent plasticity. 展开更多
关键词 lightweight high-entropy alloy mechanical alloying microstructural evolution phase stability specific strength PLASTICITY
在线阅读 下载PDF
LT-YOLO:A Lightweight Network for Detecting Tomato Leaf Diseases 被引量:1
3
作者 Zhenyang He Mengjun Tong 《Computers, Materials & Continua》 2025年第3期4301-4317,共17页
Tomato plant diseases often first manifest on the leaves,making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry.However,conventional deep learning models face challenges ... Tomato plant diseases often first manifest on the leaves,making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry.However,conventional deep learning models face challenges such as large model sizes and slow detection speeds when deployed on resource-constrained platforms and agricultural machinery.This paper proposes a lightweight model for detecting tomato leaf diseases,named LT-YOLO,based on the YOLOv8n architecture.First,we enhance the C2f module into a RepViT Block(RVB)with decoupled token and channel mixers to reduce the cost of feature extraction.Next,we incorporate a novel Efficient Multi-Scale Attention(EMA)mechanism in the deeper layers of the backbone to improve detection of critical disease features.Additionally,we design a lightweight detection head,LT-Detect,using Partial Convolution(PConv)to significantly reduce the classification and localization costs during detection.Finally,we introduce a Receptive Field Block(RFB)in the shallow layers of the backbone to expand the model’s receptive field,enabling effective detection of diseases at various scales.The improved model reduces the number of parameters by 43%and the computational load by 50%.Additionally,it achieves a mean Average Precision(mAP)of 90.9%on a publicly available dataset containing 3641 images of tomato leaf diseases,with only a 0.7%decrease compared to the baseline model.This demonstrates that the model maintains excellent accuracy while being lightweight,making it suitable for rapid detection of tomato leaf diseases. 展开更多
关键词 YOLOv8n target detection lightweight TOMATO attention mechanism
在线阅读 下载PDF
TELL-Me:A time-series-decomposition-based ensembled lightweight learning model for diverse battery prognosis and diagnosis 被引量:1
4
作者 Kun-Yu Liu Ting-Ting Wang +2 位作者 Bo-Bo Zou Hong-Jie Peng Xinyan Liu 《Journal of Energy Chemistry》 2025年第7期1-8,共8页
As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigat... As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigation of degradation mechanisms.However,dynamic operating conditions,cell-to-cell inconsistencies,and limited availability of labeled data have posed significant challenges to accurate and robust prognosis and diagnosis.Herein,we introduce a time-series-decomposition-based ensembled lightweight learning model(TELL-Me),which employs a synergistic dual-module framework to facilitate accurate and reliable forecasting.The feature module formulates features with physical implications and sheds light on battery aging mechanisms,while the gradient module monitors capacity degradation rates and captures aging trend.TELL-Me achieves high accuracy in end-of-life prediction using minimal historical data from a single battery without requiring offline training dataset,and demonstrates impressive generality and robustness across various operating conditions and battery types.Additionally,by correlating feature contributions with degradation mechanisms across different datasets,TELL-Me is endowed with the diagnostic ability that not only enhances prediction reliability but also provides critical insights into the design and optimization of next-generation batteries. 展开更多
关键词 Battery prognosis Interpretable machine learning Degradation diagnosis Ensemble learning Online prediction lightweight model
在线阅读 下载PDF
Lightweight consensus mechanisms in the Internet of Blockchained Things:Thorough analysis and research directions 被引量:1
5
作者 Somia Sahraoui Abdelmalik Bachir 《Digital Communications and Networks》 2025年第4期1245-1260,共16页
The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and ... The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and advanced services.However,this rapid expansion also heightens the vulnerability of the IoT ecosystem to security threats.Consequently,innovative solutions capable of effectively mitigating risks while accommodating the unique constraints of IoT environments are urgently needed.Recently,the convergence of Blockchain technology and IoT has introduced a decentralized and robust framework for securing data and interactions,commonly referred to as the Internet of Blockchained Things(IoBT).Extensive research efforts have been devoted to adapting Blockchain technology to meet the specific requirements of IoT deployments.Within this context,consensus algorithms play a critical role in assessing the feasibility of integrating Blockchain into IoT ecosystems.The adoption of efficient and lightweight consensus mechanisms for block validation has become increasingly essential.This paper presents a comprehensive examination of lightweight,constraint-aware consensus algorithms tailored for IoBT.The study categorizes these consensus mechanisms based on their core operations,the security of the block validation process,the incorporation of AI techniques,and the specific applications they are designed to support. 展开更多
关键词 Blockchain Internet of Things lightweight consensus
在线阅读 下载PDF
Excellent ductilization and strengthening of lightweight refractory high-entropy alloys via stable B2 nanoprecipitates 被引量:1
6
作者 Rui-Xin Wang Wei-Jian Shen +5 位作者 Yu-Jie Chen Yuan-Lin Ai Shun Li Shu-Xin Bai Yu Tang Qian Yu 《Rare Metals》 2025年第3期2128-2135,共8页
Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ord... Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ordering characteristic is destroyed after dislocation shearing.Meanwhile,the local chemical order(LCO)cannot provide an adequate strengthening effect due to its small size. 展开更多
关键词 dislocation shearingmeanwhilethe strengthening effect improve mechanical properties local chemical order lco cannot lightweight refractory high entropy alloys b precipitates ordering characteristic strengthening
原文传递
基于Filtering LSTM-Lightweight CNN的交流串联电弧故障检测方法
7
作者 何键涛 王兆锐 鲍光海 《电器与能效管理技术》 2025年第9期1-12,共12页
针对基于深度学习的电弧故障检测方法在未知多负载电路中存在泛化性能不足的问题,提出一种基于高频耦合模拟信号驱动的过滤长短时记忆(Filtering LSTM)神经网络,并将其与轻量级卷积神经网络(Lightweight CNN)相结合,构建了Filtering LST... 针对基于深度学习的电弧故障检测方法在未知多负载电路中存在泛化性能不足的问题,提出一种基于高频耦合模拟信号驱动的过滤长短时记忆(Filtering LSTM)神经网络,并将其与轻量级卷积神经网络(Lightweight CNN)相结合,构建了Filtering LSTM-Lightweight CNN电弧故障检测模型。通过将单负载电路的高频耦合信号线性叠加,即可模拟出多负载电路的高频耦合信号。然后利用模拟信号驱动Filtering LSTM,过滤多负载电路信号中的未知特征,并重构信号。最后采用树结构Parzen估计器优化过的Lightweight CNN对重构信号进行电弧故障检测。实验表明,在136000个未知多负载电路样本中,Filtering LSTM-Lightweight CNN的电弧故障检测准确率为99.45%。与未采用Filtering LSTM的检测算法相比,所提方法的检测准确率最高提升了14.05%,显著提升了电弧故障检测模型的泛化能力。 展开更多
关键词 串联电弧故障 特征过滤 轻量级卷积神经网络 故障检测
在线阅读 下载PDF
Research on SAR Image Lightweight Detection Based on Improved YOLOV8
8
作者 WANG Qing SI Zhan-jun 《印刷与数字媒体技术研究》 北大核心 2025年第1期93-100,共8页
In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal... In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal is to reduce computational and storage requirements while ensuring detection accuracy and reliability,making it an ideal choice for achieving rapid response and efficient processing.In this regard,a lightweight SAR ship target detection algorithm based on YOLOv8 was proposed in this study.Firstly,the C2f-Sc module was designed by fusing the C2f in the backbone network with the ScConv to reduce spatial redundancy and channel redundancy between features in convolutional neural networks.At the same time,the Ghost module was introduced into the neck network to effectively reduce model parameters and computational complexity.A relatively lightweight EMA attention mechanism was added to the neck network to promote the effective fusion of features at different levels.Experimental results showed that the Parameters and GFLOPs of the improved model are reduced by 8.5%and 7.0%when mAP@0.5 and mAP@0.5:0.95 are increased by 0.7%and 1.8%,respectively.It makes the model lightweight and improves the detection accuracy,which has certain application value. 展开更多
关键词 YOLOv8 Synthetic aperture radar image lightweight Target detection
在线阅读 下载PDF
Lightweight deep network and projection loss for eye semantic segmentation
9
作者 Qinjie Wang Tengfei Wang +1 位作者 Lizhuang Yang Hai Li 《中国科学技术大学学报》 北大核心 2025年第7期59-68,58,I0002,共12页
Semantic segmentation of eye images is a complex task with important applications in human–computer interaction,cognitive science,and neuroscience.Achieving real-time,accurate,and robust segmentation algorithms is cr... Semantic segmentation of eye images is a complex task with important applications in human–computer interaction,cognitive science,and neuroscience.Achieving real-time,accurate,and robust segmentation algorithms is crucial for computationally limited portable devices such as augmented reality and virtual reality.With the rapid advancements in deep learning,many network models have been developed specifically for eye image segmentation.Some methods divide the segmentation process into multiple stages to achieve model parameter miniaturization while enhancing output through post processing techniques to improve segmentation accuracy.These approaches significantly increase the inference time.Other networks adopt more complex encoding and decoding modules to achieve end-to-end output,which requires substantial computation.Therefore,balancing the model’s size,accuracy,and computational complexity is essential.To address these challenges,we propose a lightweight asymmetric UNet architecture and a projection loss function.We utilize ResNet-3 layer blocks to enhance feature extraction efficiency in the encoding stage.In the decoding stage,we employ regular convolutions and skip connections to upscale the feature maps from the latent space to the original image size,balancing the model size and segmentation accuracy.In addition,we leverage the geometric features of the eye region and design a projection loss function to further improve the segmentation accuracy without adding any additional inference computational cost.We validate our approach on the OpenEDS2019 dataset for virtual reality and achieve state-of-the-art performance with 95.33%mean intersection over union(mIoU).Our model has only 0.63M parameters and 350 FPS,which are 68%and 200%of the state-of-the-art model RITNet,respectively. 展开更多
关键词 lightweight deep network projection loss real-time semantic segmentation convolutional neural networks END-TO-END
在线阅读 下载PDF
Improved lightweight road damage detection based on YOLOv5
10
作者 LIU Chang SUN Yu +2 位作者 CHEN Jin YANG Jing WANG Fengchao 《Optoelectronics Letters》 2025年第5期314-320,共7页
There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilize... There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilized the convolutional neural network(CNN) + ghosting bottleneck(G_bneck) architecture to reduce redundant feature maps. Afterwards, we upgraded the original upsampling algorithm to content-aware reassembly of features(CARAFE) and increased the receptive field. Finally, we replaced the spatial pyramid pooling fast(SPPF) module with the basic receptive field block(Basic RFB) pooling module and added dilated convolution. After comparative experiments, we can see that the number of parameters and model size of the improved algorithm in this paper have been reduced by nearly half compared to the YOLOv5s. The frame rate per second(FPS) has been increased by 3.25 times. The mean average precision(m AP@0.5: 0.95) has increased by 8%—17% compared to other lightweight algorithms. 展开更多
关键词 road surface damage detection convolutional neural network feature maps convolutional neural network cnn lightweight model yolov improved lightweight model spatial pyram
原文传递
Steel surface defect detection based on lightweight YOLOv7
11
作者 SHI Tao WU Rongxin +1 位作者 ZHU Wenxu MA Qingliang 《Optoelectronics Letters》 2025年第5期306-313,共8页
Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version... Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version 7(YOLOv7)is proposed.First,a cascading style sheets(CSS)block module is proposed,which uses more lightweight operations to obtain redundant information in the feature map,reduces the amount of computation,and effectively improves the detection speed.Secondly,the improved spatial pyramid pooling with cross stage partial convolutions(SPPCSPC)structure is adopted to ensure that the model can also pay attention to the defect location information while predicting the defect category information,obtain richer defect features.In addition,the convolution operation in the original model is simplified,which significantly reduces the size of the model and helps to improve the detection speed.Finally,using efficient intersection over union(EIOU)loss to focus on high-quality anchors,speed up convergence and improve positioning accuracy.Experiments were carried out on the Northeastern University-defect(NEU-DET)steel surface defect dataset.Compared with the original YOLOv7 model,the number of parameters of this model was reduced by 40%,the frames per second(FPS)reached 112,and the average accuracy reached 79.1%,the detection accuracy and speed have been improved,which can meet the needs of steel surface defect detection. 展开更多
关键词 obtain redundant information defect detection steel surface cascading style sheets block module lightweight yolov lightweight operations spatial pyramid pooling steel surface defect detection
原文传递
Research on YOLO algorithm for lightweight PCB defect detection based on MobileViT
12
作者 LIU Yuchen LIU Fuzheng JIANG Mingshun 《Optoelectronics Letters》 2025年第8期483-490,共8页
Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order t... Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment. 展开更多
关键词 YOLO lightweight network mobile vision transformer mobile lightweight Network convolutional block attention module cbam mechanism MobileViT CBAM PCB Defect Detection Regression Loss Function
原文传递
LSBSP: A Lightweight Sharding Method of Blockchain Based on State Pruning for Efficient Data Sharing in IoMT
13
作者 Guoqiong Liao Yinxiang Lei +1 位作者 Yufang Xie Neal N.Xiong 《Computers, Materials & Continua》 2025年第2期3309-3335,共27页
As the Internet of Medical Things (IoMT) continues to expand, smart health-monitoring devices generate vast amounts of valuable data while simultaneously raising critical security and privacy challenges. Blockchain te... As the Internet of Medical Things (IoMT) continues to expand, smart health-monitoring devices generate vast amounts of valuable data while simultaneously raising critical security and privacy challenges. Blockchain technology presents a promising avenue to address these concerns due to its inherent decentralization and security features. However, scalability remains a persistent hurdle, particularly for IoMT applications that involve large-scale networks and resource-constrained devices. This paper introduces a novel lightweight sharding method tailored to the unique demands of IoMT data sharing. Our approach enhances state bootstrapping efficiency and reduces operational overhead by utilizing a dual-chain structure comprising a main chain and a snapshot chain. The snapshot chain periodically records key blockchain states, allowing nodes to synchronize more efficiently. This mechanism is critical in reducing the time and resources needed for new nodes to join the network or existing nodes to recover from outages. Additionally, a block state pruning technique is implemented, significantly minimizing storage requirements and lowering transaction execution overhead during initialization and reconfiguration processes. This is crucial given the substantial data volumes inherent in IoMT ecosystems. By adopting an optimistic sharding strategy, our model allows nodes to swiftly join the snapshot shard, while full shards retain the complete ledger history to ensure comprehensive transaction verification. Extensive evaluations across diverse shard configurations demonstrate that this method significantly outperforms existing baseline models. It provides a comprehensive solution for IoMT blockchain applications, striking an optimal balance between security, scalability, and operational efficiency. 展开更多
关键词 Internet of medical things blockchain sharding lightweight SNAPSHOT
在线阅读 下载PDF
A lightweight model hyperparameters searching method for fast,accurate and on-site lithology identification
14
作者 Zhenhao Xu Heng Shi +1 位作者 Peng Lin Shan Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7023-7037,共15页
The efficiency of tunnel excavation,rock strength,stability of surrounding rock,and underground engineering disasters are closely related to lithology.Accurately identifying lithology is a necessary prerequisite for i... The efficiency of tunnel excavation,rock strength,stability of surrounding rock,and underground engineering disasters are closely related to lithology.Accurately identifying lithology is a necessary prerequisite for intelligent,safe,and efficient tunnel construction.The design of conventional recognition models heavily relies on experience and extensive calculations.To develop a model suitable for deployment on construction sites and capable of accurate lithology identification,a fast search method for lithology identification models is proposed.This method integrates geological knowledge,apparent feature extraction techniques,and search algorithms.An efficient feature extraction super network using multi-scale geological features of rock surface is constructed,a model evaluation method that comprehensively considers accuracy and latency is developed,and differential evolution algorithm is used to search for the optimal model parameters.Experiments demonstrate that the proposed method enables the model to evolve faster and more accurately,and eventually a model(LithoNet)suitable for lithological classification is found.It only takes 2.10 ms to infer an image of 224×224,which is 57.25%faster than MobileNet v3 and 62.83%faster than ShuffleNet V2.The F1-score of LithoNet is 0.9874,surpassing classical models such as EfficientNetV2-S.LithoNet can be easily deployed on portable devices,effectively promoting the intelligence and accuracy of lithology identification at engineering sites. 展开更多
关键词 Lithology identification lightweight LATENCY Rock image Deep learning
在线阅读 下载PDF
Microstructure evolution and mechanical properties improvement of(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x) lightweight high-entropy alloy by Laves phase transformation
15
作者 Qin Xu Cheng-yuan Guo +3 位作者 Qi Wang Peng-yu Sun Ya-jun Yin Rui-run Chen 《Journal of Iron and Steel Research International》 2025年第6期1753-1762,共10页
(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)(x=0,0.1,0.2,0.3,0.4 at.%)lightweight high-entropy alloys with different contents of Al were prepared via vacuum non-consumable arc melting method.Effects of adding varying... (Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)(x=0,0.1,0.2,0.3,0.4 at.%)lightweight high-entropy alloys with different contents of Al were prepared via vacuum non-consumable arc melting method.Effects of adding varying Al contents on phase constitution,microstructure characteristics and mechanical properties of the lightweight alloys were studied.Results show that Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4)alloy is composed of body-centered cubic(BCC)phase and C15 Laves phase,while(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)lightweight high-entropy alloys by addition of Al are composed of BCC phase and C14 Laves phase.Addition of Al into Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4)lightweight high-entropy alloy can transform C15 Laves phase to C14 Laves phase.With further addition of Al,BCC phase of alloys is significantly refined,and the volume fraction of C14 Laves phase is raised obviously.Meanwhile,the dimension of BCC phase in the alloy by addition of 0.3 at.%Al is the most refined and that of Laves phase is also obviously refined.Adding Al to Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4)alloy can not only reduce the density of(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)alloy,but also improve strength of(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)alloy.As Al content increased from 0 to 0.4 at.%,the density of the alloy decreased from 6.22±0.875 to 5.79±0.679 g cm^(−3).Moreover,compressive strength of the alloy by 0.3 at.%Al addition is the highest to 1996.9 MPa,while fracture strain of the alloy is 16.82%.Strength improvement of alloys mainly results from microstructure refinement and precipitation of C14 Laves by Al addition into Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4)lightweight high-entropy alloy. 展开更多
关键词 lightweight high-entropy alloy Phase transformation Microstructure Mechanical property REFINEMENT Strengthening
原文传递
Proof-of-trusted-work:A lightweight blockchain consensus for decentralized IoT networks
16
作者 Pengzhan Jiang Long Shi +3 位作者 Bin Cao Taotao Wang Baofeng Ji Jun Li 《Digital Communications and Networks》 2025年第4期1054-1065,共12页
Traditional Internet of Things(IoT)architectures that rely on centralized servers for data management and decision-making are vulnerable to security threats and privacy leakage.To address this issue,blockchain has bee... Traditional Internet of Things(IoT)architectures that rely on centralized servers for data management and decision-making are vulnerable to security threats and privacy leakage.To address this issue,blockchain has been advocated for decentralized data management in a tamper-resistance,traceable,and transparent manner.However,a major issue that hinders the integration of blockchain and IoT lies in that,it is rather challenging for resource-constrained IoT devices to perform computation-intensive blockchain consensuses such as Proof-of-Work(PoW).Furthermore,the incentive mechanism of PoW pushes lightweight IoT nodes to aggregate their computing power to increase the possibility of successful block generation.Nevertheless,this eventually leads to the formation of computing power alliances,and significantly compromises the decentralization and security of BlockChain-aided IoT(BC-IoT)networks.To cope with these issues,we propose a lightweight consensus protocol for BC-IoT,called Proof-of-Trusted-Work(PoTW).The goal of the proposed consensus is to disincentivize the centralization of computing power and encourage the independent participation of lightweight IoT nodes in blockchain consensus.First,we put forth an on-chain reputation evaluation rule and a reputation chain for PoTW to enable the verifiability and traceability of nodes’reputations based on their contributions of computing power to the blockchain consensus,and we incorporate the multi-level block generation difficulty as a rewards for nodes to accumulate reputations.Second,we model the block generation process of PoTW and analyze the block throughput using the continuous time Markov chain.Additionally,we define and optimize the relative throughput gain to quantify and maximize the capability of PoTW that suppresses the computing power centralization(i.e.,centralization suppression).Furthermore,we investigate the impact of the computing power of the computing power alliance and the levels of block generation difficulty on the centralization suppression capability of PoTW.Finally,simulation results demonstrate the consistency of the analytical results in terms of block throughput.In particular,the results show that PoTW effectively reduces the block generation proportion of the computing power alliance compared with PoW,while simultaneously improving that of individual lightweight nodes.This indicates that PoTW is capable of suppressing the centralization of computing power to a certain degree.Moreover,as the levels of block generation difficulty in PoTW increase,its centralization suppression capability strengthens. 展开更多
关键词 Internet of things Blockchain DECENTRALIZATION lightweight consensus Proof-of-trusted-work
在线阅读 下载PDF
Lightweight design and manufacture of die casting magnesium alloy seat frame
17
作者 Jian Yang Kangle Wang +3 位作者 Qin Yang Jinsheng Zhang Tiegang Hu Bo Liu 《Journal of Magnesium and Alloys》 2025年第10期4817-4824,共8页
This study presents the development of a Magnesium Alloy Seat Frame(MASF),supported by case studies from automotive original equipment manufacturers.The process covers integrated design,simulation,manufacturing,and te... This study presents the development of a Magnesium Alloy Seat Frame(MASF),supported by case studies from automotive original equipment manufacturers.The process covers integrated design,simulation,manufacturing,and testing,aiming to boost industry confidence in Mg alloy applications.A novel structural design is developed that integrates the headrest with the backrest,achieving a balance between lightweight performance and safety.Structural optimization is guided by stress–strain simulations under diverse conditions within a complete forward development process.Casting simulations are conducted to analyze process characteristics,resulting in a verified MASF yield rate exceeding 90%.The final 9.88 kg MASF represents a 24.6%(3.23 kg)weight reduction versus a steel seat.This research contributes to advancements in defect control technology for large die casting magnesium alloy parts and has broad implications for their application in automotive manufacturing. 展开更多
关键词 MAGNESIUM Seat frame Forward design Die casting lightweighting
在线阅读 下载PDF
SW-YOLO:Lightweight Attitude Estimation Algorithm Based on Weighted Convolution and Star Network
18
作者 Qian Xu 《Journal of Electronic Research and Application》 2025年第5期192-199,共8页
This paper proposes SW-YOLO(StarNet Weighted-Conv YOLO),a lightweight human pose estimation network for edge devices.Current mainstream pose estimation algorithms are computationally inefficient and have poor feature ... This paper proposes SW-YOLO(StarNet Weighted-Conv YOLO),a lightweight human pose estimation network for edge devices.Current mainstream pose estimation algorithms are computationally inefficient and have poor feature capture capabilities for complex poses and occlusion scenarios.This work introduces a lightweight backbone architecture that integrates WConv(Weighted Convolution)and StarNet modules to address these issues.Leveraging StarNet’s superior capabilities in multi-level feature fusion and long-range dependency modeling,this architecture enhances the model’s spatial perception of human joint structures and contextual information integration.These improvements significantly enhance robustness in complex scenarios involving occlusion and deformation.Additionally,the introduction of WConv convolution operations,based on weight recalibration and receptive field optimization,dynamically adjusts feature importance during convolution.This reduces redundant computations while maintaining or enhancing feature representation capabilities at an extremely low computational cost.Consequently,SW-YOLO substantially reduces model complexity and inference latency while preserving high accuracy,significantly outperforming existing lightweight networks. 展开更多
关键词 YOLO11-Pose WConv StarNet lightweight algorithms Feature fusion
在线阅读 下载PDF
Real-Time Lightweight Convolutional Neural Network for Polyp Detection in Endoscope Images
19
作者 SI Bingqi PANG Chenxi +2 位作者 WANG Zhiwu JIANG Pingping YAN Guozheng 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期521-534,共14页
Colorectal cancer is the most common cancer with a second mortality rate.Polyp lesion is a precursor symptom of colorectal cancer.Detection and removal of polyps can effectively reduce the mortality of patients in the... Colorectal cancer is the most common cancer with a second mortality rate.Polyp lesion is a precursor symptom of colorectal cancer.Detection and removal of polyps can effectively reduce the mortality of patients in the early period.However,mass images will be generated during an endoscopy,which will greatly increase the workload of doctors,and long-term mechanical screening of endoscopy images will also lead to a high misdiagnosis rate.Aiming at the problem that computer-aided diagnosis models deeply depend on the computational power in the polyp detection task,we propose a lightweight model,coordinate attention-YOLOv5-Lite-Prune,based on the YOLOv5 algorithm,which is different from state-of-the-art methods proposed by the existing research that applied object detection models or their variants directly to prediction task without any lightweight processing,such as faster region-based convolutional neural networks,YOLOv3,YOLOv4,and single shot multibox detector.The innovations of our model are as follows:First,the lightweight EfficientNetLite network is introduced as the new feature extraction network.Second,the depthwise separable convolution and its improved modules with different attention mechanisms are used to replace the standard convolution in the detection head structure.Then,theα-intersection over union loss function is applied to improve the precision and convergence speed of the model.Finally,the model size is compressed with a pruning algorithm.Our model effectively reduces parameter amount and computational complexity without significant accuracy loss.Therefore,the model can be successfully deployed on the embedded deep learning platform,and detect polyps with a speed above 30 frames per second,which means the model gets rid of the limitation that deep learning models must rely on high-performance servers. 展开更多
关键词 YOLOv5 polyp lesions object detection lightweight weight pruning
原文传递
Lightweight Residual Multi-Head Convolution with Channel Attention(ResMHCNN)for End-to-End Classification of Medical Images
20
作者 Sudhakar Tummala Sajjad Hussain Chauhdary +3 位作者 Vikash Singh Roshan Kumar Seifedine Kadry Jungeun Kim 《Computer Modeling in Engineering & Sciences》 2025年第9期3585-3605,共21页
Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilit... Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilitate learning activations relevant to different kernel sizes within a multi-head convolutional layer.Therefore,this study investigates the capability of novel lightweight models incorporating residual multi-head convolution with channel attention(ResMHCNN)blocks to classify medical images.We introduced three novel lightweight deep learning models(BT-Net,LCC-Net,and BC-Net)utilizing the ResMHCNN block as their backbone.These models were crossvalidated and tested on three publicly available medical image datasets:a brain tumor dataset from Figshare consisting of T1-weighted magnetic resonance imaging slices of meningioma,glioma,and pituitary tumors;the LC25000 dataset,which includes microscopic images of lung and colon cancers;and the BreaKHis dataset,containing benign and malignant breast microscopic images.The lightweight models achieved accuracies of 96.9%for 3-class brain tumor classification using BT-Net,and 99.7%for 5-class lung and colon cancer classification using LCC-Net.For 2-class breast cancer classification,BC-Net achieved an accuracy of 96.7%.The parameter counts for the proposed lightweight models—LCC-Net,BC-Net,and BT-Net—are 0.528,0.226,and 1.154 million,respectively.The presented lightweight models,featuring ResMHCNN blocks,may be effectively employed for accurate medical image classification.In the future,these models might be tested for viability in resource-constrained systems such as mobile devices and IoMT platforms. 展开更多
关键词 lightweight models brain tumor breast cancer lung cancer colon cancer multi-head CNN
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部