期刊文献+
共找到576篇文章
< 1 2 29 >
每页显示 20 50 100
Fast mode decomposition for few-mode fiber based on lightweight neural network
1
作者 赵佳佳 陈国辉 +3 位作者 毕轩 蔡汪洋 岳磊 唐明 《Chinese Optics Letters》 SCIE EI CAS CSCD 2024年第2期88-95,共8页
In this paper,we present a fast mode decomposition method for few-mode fibers,utilizing a lightweight neural network called MobileNetV3-Light.This method can quickly and accurately predict the amplitude and phase info... In this paper,we present a fast mode decomposition method for few-mode fibers,utilizing a lightweight neural network called MobileNetV3-Light.This method can quickly and accurately predict the amplitude and phase information of different modes,enabling us to fully characterize the optical field without the need for expensive experimental equipment.We train the MobileNetV3-Light using simulated near-field optical field maps,and evaluate its performance using both simulated and reconstructed near-field optical field maps.To validate the effectiveness of this method,we conduct mode decomposition experiments on a few-mode fiber supporting six linear polarization(LP)modes(LP01,LP11e,LP11o,LP21e,LP21o,LP02).The results demonstrate a remarkable average correlation of 0.9995 between our simulated and reconstructed near-field lightfield maps.And the mode decomposition speed is about 6 ms per frame,indicating its powerful real-time processing capability.In addition,the proposed network model is compact,with a size of only 6.5 MB,making it well suited for deployment on portable mobile devices. 展开更多
关键词 deep learning lightweight neural network few-mode fiber mode decomposition
原文传递
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification 被引量:2
2
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification lightweight Convolutional neural network Depthwise Dilated Separable Convolution Hierarchical Multi-Scale Feature Fusion
在线阅读 下载PDF
A Study on Enhancing Chip Detection Efficiency Using the Lightweight Van-YOLOv8 Network
3
作者 Meng Huang Honglei Wei Xianyi Zhai 《Computers, Materials & Continua》 SCIE EI 2024年第4期531-547,共17页
In pursuit of cost-effective manufacturing,enterprises are increasingly adopting the practice of utilizing recycled semiconductor chips.To ensure consistent chip orientation during packaging,a circular marker on the f... In pursuit of cost-effective manufacturing,enterprises are increasingly adopting the practice of utilizing recycled semiconductor chips.To ensure consistent chip orientation during packaging,a circular marker on the front side is employed for pin alignment following successful functional testing.However,recycled chips often exhibit substantial surface wear,and the identification of the relatively small marker proves challenging.Moreover,the complexity of generic target detection algorithms hampers seamless deployment.Addressing these issues,this paper introduces a lightweight YOLOv8s-based network tailored for detecting markings on recycled chips,termed Van-YOLOv8.Initially,to alleviate the influence of diminutive,low-resolution markings on the precision of deep learning models,we utilize an upscaling approach for enhanced resolution.This technique relies on the Super-Resolution Generative Adversarial Network with Extended Training(SRGANext)network,facilitating the reconstruction of high-fidelity images that align with input specifications.Subsequently,we replace the original YOLOv8smodel’s backbone feature extraction network with the lightweight VanillaNetwork(VanillaNet),simplifying the branch structure to reduce network parameters.Finally,a Hybrid Attention Mechanism(HAM)is implemented to capture essential details from input images,improving feature representation while concurrently expediting model inference speed.Experimental results demonstrate that the Van-YOLOv8 network outperforms the original YOLOv8s on a recycled chip dataset in various aspects.Significantly,it demonstrates superiority in parameter count,computational intricacy,precision in identifying targets,and speed when compared to certain prevalent algorithms in the current landscape.The proposed approach proves promising for real-time detection of recycled chips in practical factory settings. 展开更多
关键词 lightweight neural networks attention mechanisms image super-resolution enhancement feature extraction small object detection
在线阅读 下载PDF
CloudViT:A Lightweight Ground-Based Cloud Image Classification Model with the Ability to Capture Global Features
4
作者 Daoming Wei Fangyan Ge +5 位作者 Bopeng Zhang Zhiqiang Zhao Dequan Li Lizong Xi Jinrong Hu Xin Wang 《Computers, Materials & Continua》 2025年第6期5729-5746,共18页
Accurate cloud classification plays a crucial role in aviation safety,climate monitoring,and localized weather forecasting.Current research has been focusing on machine learning techniques,particularly deep learning b... Accurate cloud classification plays a crucial role in aviation safety,climate monitoring,and localized weather forecasting.Current research has been focusing on machine learning techniques,particularly deep learning based model,for the types identification.However,traditional approaches such as convolutional neural networks(CNNs)encounter difficulties in capturing global contextual information.In addition,they are computationally expensive,which restricts their usability in resource-limited environments.To tackle these issues,we present the Cloud Vision Transformer(CloudViT),a lightweight model that integrates CNNs with Transformers.The integration enables an effective balance between local and global feature extraction.To be specific,CloudViT comprises two innovative modules:Feature Extraction(E_Module)and Downsampling(D_Module).These modules are able to significantly reduce the number of model parameters and computational complexity while maintaining translation invariance and enhancing contextual comprehension.Overall,the CloudViT includes 0.93×10^(6)parameters,which decreases more than ten times compared to the SOTA(State-of-the-Art)model CloudNet.Comprehensive evaluations conducted on the HBMCD and SWIMCAT datasets showcase the outstanding performance of CloudViT.It achieves classification accuracies of 98.45%and 100%,respectively.Moreover,the efficiency and scalability of CloudViT make it an ideal candidate for deployment inmobile cloud observation systems,enabling real-time cloud image classification.The proposed hybrid architecture of CloudViT offers a promising approach for advancing ground-based cloud image classification.It holds significant potential for both optimizing performance and facilitating practical deployment scenarios. 展开更多
关键词 Image classification ground-based cloud images lightweight neural networks attention mechanism deep learning vision transformer
在线阅读 下载PDF
ConGCNet:Convex geometric constructive neural network for Industrial Internet of Things
5
作者 Jing Nan Wei Dai +1 位作者 Chau Yuen Jinliang Ding 《Journal of Automation and Intelligence》 2024年第3期169-175,共7页
The intersection of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)has garnered ever-increasing attention and research interest.Nevertheless,the dilemma between the strict resource-constrained n... The intersection of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)has garnered ever-increasing attention and research interest.Nevertheless,the dilemma between the strict resource-constrained nature of IIoT devices and the extensive resource demands of AI has not yet been fully addressed with a comprehensive solution.Taking advantage of the lightweight constructive neural network(LightGCNet)in developing fast learner models for IIoT,a convex geometric constructive neural network with a low-complexity control strategy,namely,ConGCNet,is proposed in this article via convex optimization and matrix theory,which enhances the convergence rate and reduces the computational consumption in comparison with LightGCNet.Firstly,a low-complexity control strategy is proposed to reduce the computational consumption during the hidden parameters training process.Secondly,a novel output weights evaluated method based on convex optimization is proposed to guarantee the convergence rate.Finally,the universal approximation property of ConGCNet is proved by the low-complexity control strategy and convex output weights evaluated method.Simulation results,including four benchmark datasets and the real-world ore grinding process,demonstrate that ConGCNet effectively reduces computational consumption in the modelling process and improves the model’s convergence rate. 展开更多
关键词 Industrial Internet of Things lightweight geometric constructive neural network Convex optimization RESOURCE-CONSTRAINED Matrix theory
在线阅读 下载PDF
Face Age Estimation Based on CSLBP and Lightweight Convolutional Neural Network 被引量:1
6
作者 Yang Wang Ying Tian Ou Tian 《Computers, Materials & Continua》 SCIE EI 2021年第11期2203-2216,共14页
As the use of facial attributes continues to expand,research into facial age estimation is also developing.Because face images are easily affected by factors including illumination and occlusion,the age estimation of ... As the use of facial attributes continues to expand,research into facial age estimation is also developing.Because face images are easily affected by factors including illumination and occlusion,the age estimation of faces is a challenging process.This paper proposes a face age estimation algorithm based on lightweight convolutional neural network in view of the complexity of the environment and the limitations of device computing ability.Improving face age estimation based on Soft Stagewise Regression Network(SSR-Net)and facial images,this paper employs the Center Symmetric Local Binary Pattern(CSLBP)method to obtain the feature image and then combines the face image and the feature image as network input data.Adding feature images to the convolutional neural network can improve the accuracy as well as increase the network model robustness.The experimental results on IMDB-WIKI and MORPH 2 datasets show that the lightweight convolutional neural network method proposed in this paper reduces model complexity and increases the accuracy of face age estimations. 展开更多
关键词 Face age estimation lightweight convolutional neural network CSLBP SSR-Net
在线阅读 下载PDF
Lightweight Multi-scale Convolutional Neural Network for Rice Leaf Disease Recognition 被引量:1
7
作者 Chang Zhang Ruiwen Ni +2 位作者 Ye Mu Yu Sun Thobela Louis Tyasi 《Computers, Materials & Continua》 SCIE EI 2023年第1期983-994,共12页
In the field of agricultural information,the identification and prediction of rice leaf disease have always been the focus of research,and deep learning(DL)technology is currently a hot research topic in the field of ... In the field of agricultural information,the identification and prediction of rice leaf disease have always been the focus of research,and deep learning(DL)technology is currently a hot research topic in the field of pattern recognition.The research and development of high-efficiency,highquality and low-cost automatic identification methods for rice diseases that can replace humans is an important means of dealing with the current situation from a technical perspective.This paper mainly focuses on the problem of huge parameters of the Convolutional Neural Network(CNN)model and proposes a recognitionmodel that combines amulti-scale convolution module with a neural network model based on Visual Geometry Group(VGG).The accuracy and loss of the training set and the test set are used to evaluate the performance of the model.The test accuracy of this model is 97.1%that has increased 5.87%over VGG.Furthermore,the memory requirement is 26.1M,only 1.6%of the VGG.Experiment results show that this model performs better in terms of accuracy,recognition speed and memory size. 展开更多
关键词 Rice leaf diseases deep learning lightweight convolution neural networks VGG
在线阅读 下载PDF
基于Filtering LSTM-Lightweight CNN的交流串联电弧故障检测方法
8
作者 何键涛 王兆锐 鲍光海 《电器与能效管理技术》 2025年第9期1-12,共12页
针对基于深度学习的电弧故障检测方法在未知多负载电路中存在泛化性能不足的问题,提出一种基于高频耦合模拟信号驱动的过滤长短时记忆(Filtering LSTM)神经网络,并将其与轻量级卷积神经网络(Lightweight CNN)相结合,构建了Filtering LST... 针对基于深度学习的电弧故障检测方法在未知多负载电路中存在泛化性能不足的问题,提出一种基于高频耦合模拟信号驱动的过滤长短时记忆(Filtering LSTM)神经网络,并将其与轻量级卷积神经网络(Lightweight CNN)相结合,构建了Filtering LSTM-Lightweight CNN电弧故障检测模型。通过将单负载电路的高频耦合信号线性叠加,即可模拟出多负载电路的高频耦合信号。然后利用模拟信号驱动Filtering LSTM,过滤多负载电路信号中的未知特征,并重构信号。最后采用树结构Parzen估计器优化过的Lightweight CNN对重构信号进行电弧故障检测。实验表明,在136000个未知多负载电路样本中,Filtering LSTM-Lightweight CNN的电弧故障检测准确率为99.45%。与未采用Filtering LSTM的检测算法相比,所提方法的检测准确率最高提升了14.05%,显著提升了电弧故障检测模型的泛化能力。 展开更多
关键词 串联电弧故障 特征过滤 轻量级卷积神经网络 故障检测
在线阅读 下载PDF
Lightweight Malicious Code Classification Method Based on Improved Squeeze Net
9
作者 Li Li Youran Kong Qing Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期551-567,共17页
With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the netw... With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the network being attacked by malicious code.Therefore,it is important to identify malicious codes on computer systems efficiently.However,most of the existing malicious code detection methods have two problems:(1)The ability of the model to extract features is weak,resulting in poor model performance.(2)The large scale of model data leads to difficulties deploying on devices with limited resources.Therefore,this paper proposes a lightweight malicious code identification model Lightweight Malicious Code Classification Method Based on Improved SqueezeNet(LCMISNet).In this paper,the MFire lightweight feature extraction module is constructed by proposing a feature slicing module and a multi-size depthwise separable convolution module.The feature slicing module reduces the number of parameters by grouping features.The multi-size depthwise separable convolution module reduces the number of parameters and enhances the feature extraction capability by replacing the standard convolution with depthwise separable convolution with different convolution kernel sizes.In addition,this paper also proposes a feature splicing module to connect the MFire lightweight feature extraction module based on the feature reuse and constructs the lightweight model LCMISNet.The malicious code recognition accuracy of LCMISNet on the BIG 2015 dataset and the Malimg dataset reaches 98.90% and 99.58%,respectively.It proves that LCMISNet has a powerful malicious code recognition performance.In addition,compared with other network models,LCMISNet has better performance,and a lower number of parameters and computations. 展开更多
关键词 lightweight neural network malicious code classification feature slicing feature splicing multi-size depthwise separable convolution
在线阅读 下载PDF
CFRP/铝材料轮毂轻量化设计 被引量:1
10
作者 康元春 杨建华 《复合材料科学与工程》 北大核心 2025年第6期94-100,共7页
对轮毂进行轻量化设计,使用碳纤维复合材料替换原铝合金轮辋,采用了以神经网络作为代理模型的优化方法。基于等刚度理论确定碳纤维复合材料轮辋的初始厚度;综合考虑铝合金轮辐和碳纤维轮辋厚度对其性能的影响,利用拉丁超立方抽样生成多... 对轮毂进行轻量化设计,使用碳纤维复合材料替换原铝合金轮辋,采用了以神经网络作为代理模型的优化方法。基于等刚度理论确定碳纤维复合材料轮辋的初始厚度;综合考虑铝合金轮辐和碳纤维轮辋厚度对其性能的影响,利用拉丁超立方抽样生成多组试验样本;基于试验样本运用神经网络作为代理模型,对轮辐的厚度尺寸和轮辋各角度碳纤维铺层厚度进行优化;为得到最佳的碳纤维铺层顺序,在Optistruct中进一步对碳纤维轮辋铺层顺序进行优化。最终得到的CFRP/铝材料轮毂重量上减轻18.43%,且满足刚度及强度的相关要求。 展开更多
关键词 铝/碳纤维 轮毂 轻量化 神经网络 铺层优化 复合材料
在线阅读 下载PDF
基于YOLOv8n改进的水稻病害轻量化检测 被引量:3
11
作者 郭丽峰 黄俊杰 +5 位作者 吴禹竺 王思吉 王轶哲 包羽健 苏中滨 刘宏新 《农业工程学报》 北大核心 2025年第8期156-164,共9页
为解决水稻病害检测中存在的小目标特征提取困难、复杂环境下检测精度不高的问题以及在边缘化设备上实现高效实时检测,该研究提出了一种轻量化水稻病害识别方法YOLOv8-DiDL。该方法通过引入倒残差移动模块(inverted residual mobile blo... 为解决水稻病害检测中存在的小目标特征提取困难、复杂环境下检测精度不高的问题以及在边缘化设备上实现高效实时检测,该研究提出了一种轻量化水稻病害识别方法YOLOv8-DiDL。该方法通过引入倒残差移动模块(inverted residual mobile block,iRMB)增强小目标特征捕捉能力,采用变形卷积模块DCNv2(deformable convolutional networks)优化目标几何变化适应性,结合采样算子DySample(dynamic sample)算法提升复杂环境适应能力,并改进快速空间金字塔池化模块(spatial pyramid pooling fast,SPPF)为大核分离卷积注意力模块(large separable kernel attention,LSKA)增强多尺度特征融合。试验结果表明,改进的YOLOv8-DiDL模型准确率、召回率和平均精度均值分别为91.4%、83.5%、90.8%;与原始基础网络YOLOv8n相比分别提升7.0、0.5、2.5个百分点,模型权重降低9.7%,每秒浮点运算次数提升7.4%。该研究通过改进模型显著提高了水稻病害检测的精度和部署效率,为智能化农业的实时病害监测提供了技术基础。 展开更多
关键词 水稻 病害 目标检测 YOLOv8n改进模型 卷积神经网络 模型轻量化设计
在线阅读 下载PDF
基于轻量级残差网络的信号调制识别研究
12
作者 张承畅 王艺培 +1 位作者 李吉利 罗元 《实验技术与管理》 北大核心 2025年第3期114-122,共9页
针对高复杂度的神经网络难以被部署在对低延迟和存储有严格要求的场景和接收设备中的问题,该文提出了一种基于轻量级残差网络的自动调制识别(AMR)框架。该框架将蓝图可分离卷积(BSConv)与CoordGate相结合以实现轻量化的设计。为了弥补... 针对高复杂度的神经网络难以被部署在对低延迟和存储有严格要求的场景和接收设备中的问题,该文提出了一种基于轻量级残差网络的自动调制识别(AMR)框架。该框架将蓝图可分离卷积(BSConv)与CoordGate相结合以实现轻量化的设计。为了弥补轻量化设计造成的性能损失,该文提出了使用改进的基于软池化(SoftPool)的卷积注意力模块(CBAM)以提升模型的泛化能力和分类性能。实验结果表明,该文提出的轻量级AMR框架在性能提升的情况下参数量大幅减少,平均识别准确率为98.23%,参数量为87057。 展开更多
关键词 自动调制识别(AMR) 轻量级神经网络 深度学习 注意力机制
在线阅读 下载PDF
基于迁移学习的改进EfficientNet网络的皮肤病分类研究 被引量:1
13
作者 赵海燕 乌有腾 任梦晗 《内蒙古民族大学学报(自然科学版)》 2025年第1期22-27,共6页
针对目前皮肤病辅助分类技术所应用的网络模型参数量大、分类准确率不高的问题,提出了一种基于迁移学习的改进EfficientNet皮肤病分类方法。该方法应用迁移学习思想对轻量级深度卷积神经网络EfficientNet进行改进,具体包括添加全局平均... 针对目前皮肤病辅助分类技术所应用的网络模型参数量大、分类准确率不高的问题,提出了一种基于迁移学习的改进EfficientNet皮肤病分类方法。该方法应用迁移学习思想对轻量级深度卷积神经网络EfficientNet进行改进,具体包括添加全局平均池化层、冻结不同层数等对模型进行微调,形成TL-EfficientNet网络。实验结果表明,TL-EfficientNetB0在经类别权重预处理后的ISIC2018皮肤病数据集上的准确率达到85.07%,Macro_P达到0.82,网络参数只有4.49 M,适合部署到移动端。 展开更多
关键词 迁移学习 轻量级卷积神经网络 EfficientNet 皮肤病分类
在线阅读 下载PDF
基于卷积神经网络的农作物病害检测研究综述 被引量:2
14
作者 乔世成 党珊珊 +3 位作者 何海祝 关强 王郝日钦 路扬 《山西农业大学学报(自然科学版)》 北大核心 2025年第2期113-127,共15页
我国是农业大国,拥有广大的农作物种植面积和丰富的农业资源。然而,近年来,农作物病害问题日益严重。农作物病害不仅直接影响产量和质量,还会造成农民的经济损失,威胁粮食安全和生态环境,对我国农业可持续发展构成了巨大威胁。因此,对... 我国是农业大国,拥有广大的农作物种植面积和丰富的农业资源。然而,近年来,农作物病害问题日益严重。农作物病害不仅直接影响产量和质量,还会造成农民的经济损失,威胁粮食安全和生态环境,对我国农业可持续发展构成了巨大威胁。因此,对农作物病害的精准检测是提高我国农业发展的关键因素。随着深度学习的不断发展,无损检测技术已得到广泛应用,利用卷积神经网络进行农作物病害的精准检测成为近年来研究的热点。卷积神经网络具有较好的图像检测与识别能力,能够适应多种病害类型,实现高效、准确的大规模检测,被广泛应用于农作物病害的精准检测中。本文首先介绍了卷积神经网络结构;然后探讨了几种典型的检测农作物病害的卷积神经网络模型;其次分析了其它神经网络研究情况并进行总结;重点讨论了目前基于小样本学习、小目标检测、网络轻量化改进的卷积神经网络热点研究问题;之后对未来农作物病害检测所面临的挑战和展望进行了总结,如针对数据集标注困难、模型缺乏泛化能力、小样本小目标数据集识别精度较低等问题,提出了建立更高质量的农作物病害数据集、优化小样本小目标数据集下的网络模型结构以及对农作物病害无损检测进行实时监测与预警等研究展望,以期为不断推进农业技术创新和应用、为我国农作物病害的精准检测研究提供参考依据。 展开更多
关键词 卷积神经网络 小样本 小目标 轻量化
在线阅读 下载PDF
一种轻量化的CNN人类活动识别模型
15
作者 简献忠 刘冰岩 黄宏 《控制工程》 北大核心 2025年第11期1964-1971,共8页
针对当前人类活动识别模型识别精度不高、模型参数多的问题,提出了一种轻量化的卷积神经网络(convolutional neural network,CNN)人类活动识别模型。首先,对传感器数据进行预处理;然后,将处理好的数据输入到CNN模型中识别人体的具体活动... 针对当前人类活动识别模型识别精度不高、模型参数多的问题,提出了一种轻量化的卷积神经网络(convolutional neural network,CNN)人类活动识别模型。首先,对传感器数据进行预处理;然后,将处理好的数据输入到CNN模型中识别人体的具体活动;最后,将压缩激励(squeeze-and-excitation,SE)注意力模块嵌入特征提取主干网络中,为各个卷积通道分配不同的权重,强化关键特征,提高模型精度。在UCI-HAR、WISDM和OPPORTUNITY这三个公共数据集上对模型性能进行评估,该模型在UCI-HAR数据集上的F_(1)为97.54%,参数为17198个;在WISDM数据集上的F_(1)为97.66%,参数为16622个;在OPPORTUNITY数据集上的F_(1)为82.38%,参数为27545个。与现有的先进人类活动识别模型相比,识别精度更高,模型参数更少,模型泛化能力更强。 展开更多
关键词 人类活动识别 轻量级网络 卷积神经网络 注意力模块 深度可分离卷积
原文传递
面向遥感图像场景分类的轻量级沙漏密集网络
16
作者 刘向举 吴文彦 蒋社想 《重庆工商大学学报(自然科学版)》 2025年第4期17-26,共10页
目的在具有复杂空间结构和地理布局的遥感图像场景分类任务中,深度卷积神经网络(CNNs)虽然具有更好的分类性能,但是通常具有高复杂度,存在不适用于移动或嵌入式设备等问题,针对此,提出一种新的轻量级沙漏密集网络(LHD-NET),以实现分类... 目的在具有复杂空间结构和地理布局的遥感图像场景分类任务中,深度卷积神经网络(CNNs)虽然具有更好的分类性能,但是通常具有高复杂度,存在不适用于移动或嵌入式设备等问题,针对此,提出一种新的轻量级沙漏密集网络(LHD-NET),以实现分类精度和模型复杂性之间的良好平衡。方法首先通过具有特征补偿机制的浅层混合下采样结构提取浅层信息,在保证信息充分提取的同时减少后续层的参数数量,从而在保持模型轻量级的同时提高性能;然后在沙漏结构间采用密集连接以提高特征复用,在一定程度上避免了梯度消失,促进了信息传递;最后利用一个具有较高语义信息的卷积层特征来指导多层特征聚合,以此来提高分类器的性能,同时训练过程中采用基于标签平滑的交叉熵损失函数,对真实标签进行平滑处理,相比于普通交叉熵损失函数能够有效提高鲁棒性和减轻模型过拟合问题。结果实验结果表明:该模型在5.4 M参数量下取得了显著的分类性能,在UC Merced Land-Use、SIRI-WHU和NWPU-RESISC453个公开遥感数据集上分别取得了99.19%、97.75%和92.38%的平均分类准确率。结论通过实验结果可证明所提模型能够在少量参数下便取得较好分类性能,相较于深度神经网络在保持高分类精度的前提下能显著降低模型参数量,对遥感图像场景分类任务及模型轻量化具有一定的参考价值。 展开更多
关键词 遥感图像 场景分类 轻量级 卷积神经网络
在线阅读 下载PDF
基于机器学习的建筑能耗检测预警平台构建 被引量:1
17
作者 徐基平 《粘接》 2025年第10期218-221,共4页
为解决传统建筑能耗管理方法预测精度低、实时性差、可扩展性弱等问题,本文提出一种基于机器学习集成模型的分布式建筑能耗监测预警平台。平台采用分层架构设计,感知层通过物联网设备实时采集多源数据;数据层完成缺失值填充、异常值修... 为解决传统建筑能耗管理方法预测精度低、实时性差、可扩展性弱等问题,本文提出一种基于机器学习集成模型的分布式建筑能耗监测预警平台。平台采用分层架构设计,感知层通过物联网设备实时采集多源数据;数据层完成缺失值填充、异常值修正、离散编码与标准化预处理,并基于特征重要性评估筛选日类别、时间节点、干球温度、相对湿度、太阳辐射强度及供热通风与空气调节系统能耗功率6项核心特征;应用层集成可视化与预警功能。为避免出现预警错误或遗漏,本文提出双层集成预测模型:第一层由人工神经网络与轻量级梯度提升机并行生成初步预测结果,第二层通过线性回归加权融合双模型输出,显著提升模型性能。模型验证表明,平台可实现实时数据采集、动态阈值预警及多建筑集群并行管理,为节能决策提供全流程技术支持。 展开更多
关键词 建筑能耗预测 轻量级梯度提升机 人工神经网络 集成模型 监测预警平台
在线阅读 下载PDF
基于改进MobileNetV2的烟丝种类识别
18
作者 王莉 朱雯路 +3 位作者 范磊 胡宏帅 袁强 牛群峰 《中国农机化学报》 北大核心 2025年第8期58-65,共8页
为解决烟丝形态小且不同种类烟丝之间差异小、难以识别的问题,提出一种基于改进MobileNetV2的烟丝种类识别方法。以MobileNetV2为基础网络,引入多尺度特征融合模块以获取丰富的烟丝细节信息;删除主干网络中过多的bottleneck和重新设计... 为解决烟丝形态小且不同种类烟丝之间差异小、难以识别的问题,提出一种基于改进MobileNetV2的烟丝种类识别方法。以MobileNetV2为基础网络,引入多尺度特征融合模块以获取丰富的烟丝细节信息;删除主干网络中过多的bottleneck和重新设计分类器以降低网络深度;结合知识蒸馏技术使用迁移学习后的ResNet50网络对改进后的MobileNetV2网络进行学习指导以实现模型轻量化。试验结果表明,基于改进MobileNetV2的烟丝种类识别方法对各类烟丝的识别准确率为95.37%,比基础网络提高8.6%;参数量为0.62 M,比基础网络减少1.61 M。同时,与传统的分类网络(GoogLeNet、AlexNet、ResNet50、VGG16)相比,烟丝识别准确率更高、计算量更小。 展开更多
关键词 烟丝识别 深度学习 卷积神经网络 知识蒸馏 轻量化
在线阅读 下载PDF
基于轻量级卷积神经网络的雷达辐射源识别方法
19
作者 张忠民 姜嵛涵 《应用科技》 2025年第1期166-172,共7页
在雷达辐射源信号识别中,针对现有的识别方法存在实时性差、网络模型参数量大以及难以应用于资源受限的设备等问题,提出了一种基于轻量级卷积神经网络的雷达辐射源信号识别方法。首先,利用平滑伪Wigner-Ville分布(smooth pseudo Wigner-... 在雷达辐射源信号识别中,针对现有的识别方法存在实时性差、网络模型参数量大以及难以应用于资源受限的设备等问题,提出了一种基于轻量级卷积神经网络的雷达辐射源信号识别方法。首先,利用平滑伪Wigner-Ville分布(smooth pseudo Wigner-Ville distribution,SPWVD)将雷达辐射源信号转换为时频图像,并对时频图像进行图像预处理;其次,基于Vision Transformer的架构设计,结合传统的卷积神经网络,构建了轻量级网络模型RecNet;最后,利用预处理后的时频图像对RecNet网络模型进行训练,实现对9种雷达辐射源信号的高效识别。实验表明,该方法在信噪比为−8 dB时,对9种雷达辐射源信号的识别准确率达到95.7%,模型参数量为0.9×10^(6)且推理延迟仅为4.67 ms,在保证较高识别准确率的同时,具有更快的识别速度和更小的模型参数量,具有一定的工程应用价值。 展开更多
关键词 轻量级 卷积神经网络 雷达辐射源识别 时频分析 图像处理 Vision Transformer 高效识别 深度学习
在线阅读 下载PDF
基于机器学习的云图分割综述
20
作者 车蕾 张洪瑞 《科学技术与工程》 北大核心 2025年第6期2193-2206,共14页
云的变化复杂多样,在天气预测、灾难预警中发挥着重大作用,影响着人们的日常生活。对云的观测主要通过雷达、遥感卫星和全天空成像仪,记录的云图分为雷达云图、卫星云图和地基云图,三者都是云观测中不可或缺的部分。随着机器学习在多领... 云的变化复杂多样,在天气预测、灾难预警中发挥着重大作用,影响着人们的日常生活。对云的观测主要通过雷达、遥感卫星和全天空成像仪,记录的云图分为雷达云图、卫星云图和地基云图,三者都是云观测中不可或缺的部分。随着机器学习在多领域的发展,逐渐被运用到云图分割中去并取得了很大的进步。通过广泛调研相关领域的文献和成果,将机器学习的云图分割分为基于神经网络的云图分割方法、基于迁移学习的云图分割方法和基于轻量级模型的云图分割方法这3种类型,对每种类型中近几年提出的方法进行了对比,并进一步总结了云图分割中面对不同问题的改进方法,给出了几个改进方案供参考。 展开更多
关键词 机器学习 云图分割 神经网络 迁移学习 轻量级模型
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部