期刊文献+
共找到1,253篇文章
< 1 2 63 >
每页显示 20 50 100
Unstructured Road Extraction in UAV Images based on Lightweight Model 被引量:1
1
作者 Di Zhang Qichao An +3 位作者 Xiaoxue Feng Ronghua Liu Jun Han Feng Pan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期372-384,共13页
There is no unified planning standard for unstructured roads,and the morphological structures of these roads are complex and varied.It is important to maintain a balance between accuracy and speed for unstructured roa... There is no unified planning standard for unstructured roads,and the morphological structures of these roads are complex and varied.It is important to maintain a balance between accuracy and speed for unstructured road extraction models.Unstructured road extraction algorithms based on deep learning have problems such as high model complexity,high computational cost,and the inability to adapt to current edge computing devices.Therefore,it is best to use lightweight network models.Considering the need for lightweight models and the characteristics of unstructured roads with different pattern shapes,such as blocks and strips,a TMB(Triple Multi-Block)feature extraction module is proposed,and the overall structure of the TMBNet network is described.The TMB module was compared with SS-nbt,Non-bottleneck-1D,and other modules via experiments.The feasibility and effectiveness of the TMB module design were proven through experiments and visualizations.The comparison experiment,using multiple convolution kernel categories,proved that the TMB module can improve the segmentation accuracy of the network.The comparison with different semantic segmentation networks demonstrates that the TMBNet network has advantages in terms of unstructured road extraction. 展开更多
关键词 Unstructured road lightweight model Triple Multi-Block(TMB) Semantic segmentation net
在线阅读 下载PDF
TELL-Me:A time-series-decomposition-based ensembled lightweight learning model for diverse battery prognosis and diagnosis 被引量:1
2
作者 Kun-Yu Liu Ting-Ting Wang +2 位作者 Bo-Bo Zou Hong-Jie Peng Xinyan Liu 《Journal of Energy Chemistry》 2025年第7期1-8,共8页
As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigat... As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigation of degradation mechanisms.However,dynamic operating conditions,cell-to-cell inconsistencies,and limited availability of labeled data have posed significant challenges to accurate and robust prognosis and diagnosis.Herein,we introduce a time-series-decomposition-based ensembled lightweight learning model(TELL-Me),which employs a synergistic dual-module framework to facilitate accurate and reliable forecasting.The feature module formulates features with physical implications and sheds light on battery aging mechanisms,while the gradient module monitors capacity degradation rates and captures aging trend.TELL-Me achieves high accuracy in end-of-life prediction using minimal historical data from a single battery without requiring offline training dataset,and demonstrates impressive generality and robustness across various operating conditions and battery types.Additionally,by correlating feature contributions with degradation mechanisms across different datasets,TELL-Me is endowed with the diagnostic ability that not only enhances prediction reliability but also provides critical insights into the design and optimization of next-generation batteries. 展开更多
关键词 Battery prognosis Interpretable machine learning Degradation diagnosis Ensemble learning Online prediction lightweight model
在线阅读 下载PDF
Improved lightweight road damage detection based on YOLOv5
3
作者 LIU Chang SUN Yu +2 位作者 CHEN Jin YANG Jing WANG Fengchao 《Optoelectronics Letters》 2025年第5期314-320,共7页
There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilize... There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilized the convolutional neural network(CNN) + ghosting bottleneck(G_bneck) architecture to reduce redundant feature maps. Afterwards, we upgraded the original upsampling algorithm to content-aware reassembly of features(CARAFE) and increased the receptive field. Finally, we replaced the spatial pyramid pooling fast(SPPF) module with the basic receptive field block(Basic RFB) pooling module and added dilated convolution. After comparative experiments, we can see that the number of parameters and model size of the improved algorithm in this paper have been reduced by nearly half compared to the YOLOv5s. The frame rate per second(FPS) has been increased by 3.25 times. The mean average precision(m AP@0.5: 0.95) has increased by 8%—17% compared to other lightweight algorithms. 展开更多
关键词 road surface damage detection convolutional neural network feature maps convolutional neural network cnn lightweight model yolov improved lightweight model spatial pyram
原文传递
Lightweight Residual Multi-Head Convolution with Channel Attention(ResMHCNN)for End-to-End Classification of Medical Images
4
作者 Sudhakar Tummala Sajjad Hussain Chauhdary +3 位作者 Vikash Singh Roshan Kumar Seifedine Kadry Jungeun Kim 《Computer Modeling in Engineering & Sciences》 2025年第9期3585-3605,共21页
Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilit... Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilitate learning activations relevant to different kernel sizes within a multi-head convolutional layer.Therefore,this study investigates the capability of novel lightweight models incorporating residual multi-head convolution with channel attention(ResMHCNN)blocks to classify medical images.We introduced three novel lightweight deep learning models(BT-Net,LCC-Net,and BC-Net)utilizing the ResMHCNN block as their backbone.These models were crossvalidated and tested on three publicly available medical image datasets:a brain tumor dataset from Figshare consisting of T1-weighted magnetic resonance imaging slices of meningioma,glioma,and pituitary tumors;the LC25000 dataset,which includes microscopic images of lung and colon cancers;and the BreaKHis dataset,containing benign and malignant breast microscopic images.The lightweight models achieved accuracies of 96.9%for 3-class brain tumor classification using BT-Net,and 99.7%for 5-class lung and colon cancer classification using LCC-Net.For 2-class breast cancer classification,BC-Net achieved an accuracy of 96.7%.The parameter counts for the proposed lightweight models—LCC-Net,BC-Net,and BT-Net—are 0.528,0.226,and 1.154 million,respectively.The presented lightweight models,featuring ResMHCNN blocks,may be effectively employed for accurate medical image classification.In the future,these models might be tested for viability in resource-constrained systems such as mobile devices and IoMT platforms. 展开更多
关键词 lightweight models brain tumor breast cancer lung cancer colon cancer multi-head CNN
在线阅读 下载PDF
Mineral identification in thin sections using a lightweight and attention mechanism
5
作者 Xin Zhang Wei Dang +4 位作者 Jun Liu Zijuan Yin Guichao Du Yawen He Yankai Xue 《Natural Gas Industry B》 2025年第2期135-146,共12页
Mineral identification is foundational to geological survey research,mineral resource exploration,and mining engineering.Considering the diversity of mineral types and the challenge of achieving high recognition accur... Mineral identification is foundational to geological survey research,mineral resource exploration,and mining engineering.Considering the diversity of mineral types and the challenge of achieving high recognition accuracy for similar features,this study introduces a mineral detection method based on YOLOv8-SBI.This work enhances feature extraction by integrating spatial pyramid pooling-fast(SPPF)with the simplified self-attention module(SimAM),significantly improving the precision of mineral feature detection.In the feature fusion network,a weighted bidirectional feature pyramid network is employed for advanced cross-channel feature integration,effectively reducing feature redundancy.Additionally,Inner-Intersection Over Union(InnerIOU)is used as the loss function to improve the average quality localization performance of anchor boxes.Experimental results show that the YOLOv8-SBI model achieves an accuracy of 67.9%,a recall of 74.3%,a mAP@0.5 of 75.8%,and a mAP@0.5:0.95 of 56.7%,with a real-time detection speed of 244.2 frames per second.Compared to YOLOv8,YOLOv8-SBI demonstrates a significant improvement with 15.4%increase in accuracy,28.5%increase in recall,and increases of 28.1%and 20.9%in mAP@0.5 and mAP@0.5:0.95,respectively.Furthermore,relative to other models,such as YOLOv3,YOLOv5,YOLOv6,YOLOv8,YOLOv9,and YOLOv10,YOLOv8-SBI has a smaller parameter size of only 3.01×10^(6).This highlights the optimal balance between detection accuracy and speed,thereby offering robust technical support for intelligent mineral classification. 展开更多
关键词 Deep learning Neural networks lightweight models Attention mechanisms Mineral identification
在线阅读 下载PDF
Efficient and lightweight 3D building reconstruction from drone imagery using sparse line and point clouds
6
作者 Xiongjie YIN Jinquan HE Zhanglin CHENG 《虚拟现实与智能硬件(中英文)》 2025年第2期111-126,共16页
Efficient three-dimensional(3D)building reconstruction from drone imagery often faces data acquisition,storage,and computational challenges because of its reliance on dense point clouds.In this study,we introduced a n... Efficient three-dimensional(3D)building reconstruction from drone imagery often faces data acquisition,storage,and computational challenges because of its reliance on dense point clouds.In this study,we introduced a novel method for efficient and lightweight 3D building reconstruction from drone imagery using line clouds and sparse point clouds.Our approach eliminates the need to generate dense point clouds,and thus significantly reduces the computational burden by reconstructing 3D models directly from sparse data.We addressed the limitations of line clouds for plane detection and reconstruction by using a new algorithm.This algorithm projects 3D line clouds onto a 2D plane,clusters the projections to identify potential planes,and refines them using sparse point clouds to ensure an accurate and efficient model reconstruction.Extensive qualitative and quantitative experiments demonstrated the effectiveness of our method,demonstrating its superiority over existing techniques in terms of simplicity and efficiency. 展开更多
关键词 3D reconstruction Line clouds Sparse clouds lightweight models
在线阅读 下载PDF
Lightweight Classroom Student Action Recognition Method Based on Spatiotemporal Multimodal Feature Fusion
7
作者 Shaodong Zou Di Wu +2 位作者 Jianhou Gan Juxiang Zhou Jiatian Mei 《Computers, Materials & Continua》 2025年第4期1101-1116,共16页
The task of student action recognition in the classroom is to precisely capture and analyze the actions of students in classroom videos,providing a foundation for realizing intelligent and accurate teaching.However,th... The task of student action recognition in the classroom is to precisely capture and analyze the actions of students in classroom videos,providing a foundation for realizing intelligent and accurate teaching.However,the complex nature of the classroom environment has added challenges and difficulties in the process of student action recognition.In this research article,with regard to the circumstances where students are prone to be occluded and classroom computing resources are restricted in real classroom scenarios,a lightweight multi-modal fusion action recognition approach is put forward.This proposed method is capable of enhancing the accuracy of student action recognition while concurrently diminishing the number of parameters of the model and the Computation Amount,thereby achieving a more efficient and accurate recognition performance.In the feature extraction stage,this method fuses the keypoint heatmap with the RGB(Red-Green-Blue color model)image.In order to fully utilize the unique information of different modalities for feature complementarity,a Feature Fusion Module(FFE)is introduced.The FFE encodes and fuses the unique features of the two modalities during the feature extraction process.This fusion strategy not only achieves fusion and complementarity between modalities,but also improves the overall model performance.Furthermore,to reduce the computational load and parameter scale of the model,we use keypoint information to crop RGB images.At the same time,the first three networks of the lightweight feature extraction network X3D are used to extract dual-branch features.These methods significantly reduce the computational load and parameter scale.The number of parameters of the model is 1.40 million,and the computation amount is 5.04 billion floating-point operations per second(GFLOPs),achieving an efficient lightweight design.In the Student Classroom Action Dataset(SCAD),the accuracy of the model is 88.36%.In NTU 60(Nanyang Technological University Red-Green-Blue-Depth RGB+Ddataset with 60 categories),the accuracies on X-Sub(The people in the training set are different from those in the test set)and X-View(The perspectives of the training set and the test set are different)are 95.76%and 98.82%,respectively.On the NTU 120 dataset(Nanyang Technological University Red-Green-Blue-Depth dataset with 120 categories),RGB+Dthe accuracies on X-Sub and X-Set(the perspectives of the training set and the test set are different)are 91.97%and 93.45%,respectively.The model has achieved a balance in terms of accuracy,computation amount,and the number of parameters. 展开更多
关键词 Action recognition student classroom action multimodal fusion lightweight model design
在线阅读 下载PDF
Ultra-lightweight CNN design based on neural architecture search and knowledge distillation: A novel method to build the automatic recognition model of space target ISAR images 被引量:6
8
作者 Hong Yang Ya-sheng Zhang +1 位作者 Can-bin Yin Wen-zhe Ding 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期1073-1095,共23页
In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of th... In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of the space target inverse synthetic aperture radar(ISAR)image recognition model with ultra-lightweight and high accuracy.This method introduces the NAS method into the radar image recognition for the first time,which solves the time-consuming and labor-consuming problems in the artificial design of the space target ISAR image automatic recognition model(STIIARM).On this basis,the NAS model’s knowledge is transferred to the student model with lower computational complexity by the flow of the solution procedure(FSP)distillation method.Thus,the decline of recognition accuracy caused by the direct compression of model structural parameters can be effectively avoided,and the ultralightweight STIIARM can be obtained.In the method,the Inverted Linear Bottleneck(ILB)and Inverted Residual Block(IRB)are firstly taken as each block’s basic structure in CNN.And the expansion ratio,output filter size,number of IRBs,and convolution kernel size are set as the search parameters to construct a hierarchical decomposition search space.Then,the recognition accuracy and computational complexity are taken as the objective function and constraint conditions,respectively,and the global optimization model of the CNN architecture search is established.Next,the simulated annealing(SA)algorithm is used as the search strategy to search out the lightweight and high accuracy STIIARM directly.After that,based on the three principles of similar block structure,the same corresponding channel number,and the minimum computational complexity,the more lightweight student model is designed,and the FSP matrix pairing between the NAS model and student model is completed.Finally,by minimizing the loss between the FSP matrix pairs of the NAS model and student model,the student model’s weight adjustment is completed.Thus the ultra-lightweight and high accuracy STIIARM is obtained.The proposed method’s effectiveness is verified by the simulation experiments on the ISAR image dataset of five types of space targets. 展开更多
关键词 Space target ISAR image Neural architecture search Knowledge distillation lightweight model
在线阅读 下载PDF
Cephalopods Classification Using Fine Tuned Lightweight Transfer Learning Models
9
作者 P.Anantha Prabha G.Suchitra R.Saravanan 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3065-3079,共15页
Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist.Manual observation and iden-tification take time and are always contingent on the involvement of expe... Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist.Manual observation and iden-tification take time and are always contingent on the involvement of experts.A system is proposed to alleviate this challenge that uses transfer learning techni-ques to classify the cephalopods automatically.In the proposed method,only the Lightweight pre-trained networks are chosen to enable IoT in the task of cephalopod recognition.First,the efficiency of the chosen models is determined by evaluating their performance and comparing thefindings.Second,the models arefine-tuned by adding dense layers and tweaking hyperparameters to improve the classification of accuracy.The models also employ a well-tuned Rectified Adam optimizer to increase the accuracy rates.Third,Adam with Gradient Cen-tralisation(RAdamGC)is proposed and used infine-tuned models to reduce the training time.The framework enables an Internet of Things(IoT)or embedded device to perform the classification tasks by embedding a suitable lightweight pre-trained network.Thefine-tuned models,MobileNetV2,InceptionV3,and NASNet Mobile have achieved a classification accuracy of 89.74%,87.12%,and 89.74%,respectively.Thefindings have indicated that thefine-tuned models can classify different kinds of cephalopods.The results have also demonstrated that there is a significant reduction in the training time with RAdamGC. 展开更多
关键词 CEPHALOPODS transfer learning lightweight models classification deep learning fish IOT
在线阅读 下载PDF
Tree Detection Algorithm Based on Embedded YOLO Lightweight Network
10
作者 吕峰 王新彦 +2 位作者 李磊 江泉 易政洋 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期518-527,共10页
To avoid colliding with trees during its operation,a lawn mower robot must detect the trees.Existing tree detection methods suffer from low detection accuracy(missed detection)and the lack of a lightweight model.In th... To avoid colliding with trees during its operation,a lawn mower robot must detect the trees.Existing tree detection methods suffer from low detection accuracy(missed detection)and the lack of a lightweight model.In this study,a dataset of trees was constructed on the basis of a real lawn environment.According to the theory of channel incremental depthwise convolution and residual suppression,the Embedded-A module is proposed,which expands the depth of the feature map twice to form a residual structure to improve the lightweight degree of the model.According to residual fusion theory,the Embedded-B module is proposed,which improves the accuracy of feature-map downsampling by depthwise convolution and pooling fusion.The Embedded YOLO object detection network is formed by stacking the embedded modules and the fusion of feature maps of different resolutions.Experimental results on the testing set show that the Embedded YOLO tree detection algorithm has 84.17%and 69.91%average precision values respectively for trunk and spherical tree,and 77.04% mean average precision value.The number of convolution parameters is 1.78×10^(6),and the calculation amount is 3.85 billion float operations per second.The size of weight file is 7.11MB,and the detection speed can reach 179 frame/s.This study provides a theoretical basis for the lightweight application of the object detection algorithm based on deep learning for lawn mower robots. 展开更多
关键词 Embedded YOLO algorithm lightweight model machine vision tree detection mowing robot
原文传递
基于改进YOLOv8m的小麦仓储粮虫检测方法 被引量:2
11
作者 吕宗旺 王甜甜 +1 位作者 孙福艳 祝玉华 《中国农机化学报》 北大核心 2025年第3期108-114,共7页
害虫是造成仓储小麦损失的重要因素之一,及时检测害虫并采取有效手段能够减少仓储小麦损失。传统人工检测害虫方法存在人工因素影响较大、速度慢的问题,基于深度学习的仓储粮虫检测方法虽然耗时短,但存在模型较大、速度和准确率二者难... 害虫是造成仓储小麦损失的重要因素之一,及时检测害虫并采取有效手段能够减少仓储小麦损失。传统人工检测害虫方法存在人工因素影响较大、速度慢的问题,基于深度学习的仓储粮虫检测方法虽然耗时短,但存在模型较大、速度和准确率二者难以平衡的问题。故首先选取YOLOv8m算法作为基础进行改进,接着以更轻量化的网络Shufflenetv2代替Darknet—53;其次,在主干网络末端添加Squeeze—and—Excitation Networks注意力机制获取高质量的特征图,有效提高检测精度;最后,采用WIoUv3 Loss为YOLOv8m的回归损失函数,提高检测的精度和速度。试验结果表明:所提出的改进模型平均精度均值达到95.4%,模型参数量为19.46 M,FLOPs为58.74 G。相比其他模型,精确率更高,模型参数量更低,速度更快,能够为仓储害虫检测提供有效技术支撑。 展开更多
关键词 小麦仓储粮虫 深度学习 小目标检测 注意力机制 轻量化模型
在线阅读 下载PDF
基于PLP-net轻量化模型的马铃薯捡拾收获中杂质检测方法 被引量:1
12
作者 潘志国 邱保华 +4 位作者 杨然兵 张还 张健 李莹莹 邓志熙 《农业工程学报》 北大核心 2025年第12期208-218,共11页
针对目前马铃薯杂质检测算法存在的运算量高、内存占用大、实时性差等问题,该研究提出了一种基于PLP-net的轻量化检测模型。首先,通过重构骨干网络架构并优化检测头网络,显著降低模型运算量;其次,引入ECA(efficient channel attention)... 针对目前马铃薯杂质检测算法存在的运算量高、内存占用大、实时性差等问题,该研究提出了一种基于PLP-net的轻量化检测模型。首先,通过重构骨干网络架构并优化检测头网络,显著降低模型运算量;其次,引入ECA(efficient channel attention)注意力机制强化关键特征提取能力,并采用Focal-DIoU损失函数(focal and distance-IoU loss)优化边界框回归过程来解决数据集中杂质样本失衡的问题,构建基础模型PL-net。然后,基于模型稀疏化训练结果,精确剪除冗余通道,有效缩减运算量及内存占用,提升模型实时性,后经微调训练后构建PLP-net轻量化模型。为实现工程化应用,该研究采用TensorRT推理部署框架将PLP-net部署至嵌入式设备,并基于PyQt5(Python Qt5 binding)框架开发了可视化交互系统以满足马铃薯杂质检测的生产需求。试验结果表明:与YOLOv8n模型相比,PLP-net在计算效率方面明显提升,浮点运算量降低7.2 G,模型体积压缩2.1 MB,推理速度提升99.4帧/s。使用TensorRT加速和未使用TensorRT加速的PLP-net模型相较于YOLOv8n分别提升18.4帧/s和11.4帧/s。PLP-net模型可为后续马铃薯杂质智能分拣提供技术支撑。 展开更多
关键词 马铃薯杂质 PLP-net 轻量化 模型剪枝 模型部署
在线阅读 下载PDF
基于轻量化CBAM—GoogLeNet的辣椒病虫害识别 被引量:2
13
作者 戴敏 孙文靖 缪宏 《中国农机化学报》 北大核心 2025年第2期224-229,252,共7页
针对GoogLeNet模型在自然环境下进行辣椒叶片病虫害识别时存在网络参数多、模型内存大以及训练时间长的问题,提出一种融合CBAM机制的轻量化GoogLeNet模型(CBAM—GoogLeNet)。采用CBAM注意力机制替换Inception(4b)和Inception(4c)模块,... 针对GoogLeNet模型在自然环境下进行辣椒叶片病虫害识别时存在网络参数多、模型内存大以及训练时间长的问题,提出一种融合CBAM机制的轻量化GoogLeNet模型(CBAM—GoogLeNet)。采用CBAM注意力机制替换Inception(4b)和Inception(4c)模块,将该注意力机制插入到平均池化层之后,在全连接层中添加L2正则化,达到减小训练模型和缩短训练时长的目的,同时保证网络模型的高准确率和验证率,并结合MATLAB平台设计一款可视化的辣椒病虫害识别系统。结果表明,CBAM—GoogLeNet的模型大小相比AlexNet、VGG16、VGG19和GoogLeNet分别缩小91.2%、96.2%、96.3%和15.0%,训练时长分别减少12.7%、26.5%、62.2%和8.8%,此外,该模型的识别准确率达到99.5%,验证准确率达到97.3%,实现模型轻量化和快速精准识别的目标。为辣椒及时防治、减少损失提供一种有效的技术支持。 展开更多
关键词 辣椒病虫害 精准识别 轻量化模型 注意力机制 深度学习
在线阅读 下载PDF
Brittleness Generation Mechanism and Failure Model of High Strength Lightweight Aggregate Concrete
14
作者 胡曙光 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第z1期15-18,共4页
The brittleness generation mechanism of high strength lightweight aggregate con-crete(HSLWAC) was presented, and it was indicated that lightweight aggregate was the vulnerable spot, initiating brittleness. Based on th... The brittleness generation mechanism of high strength lightweight aggregate con-crete(HSLWAC) was presented, and it was indicated that lightweight aggregate was the vulnerable spot, initiating brittleness. Based on the analysis of the brittleness failure by the load-deflection curve, the brittleness presented by HSLWAC was more prominent compared with ordinary lightweight aggregate concrete of the same strength grade. The model of brittleness failure was also established. 展开更多
关键词 high strength lightweight aggregate concrete(HSLWAC) BRITTLENESS failure model
在线阅读 下载PDF
基于改进YOLO 11模型的棉田地表残膜识别方法研究 被引量:1
15
作者 孟庆建 翟志强 +3 位作者 张连朴 吕继东 王虎挺 张若宇 《农业机械学报》 北大核心 2025年第5期17-25,48,共10页
为实现残膜回收机在自然环境中快速、准确地识别棉田地表残膜目标,本文提出了一种基于DCA-YOLO 11轻量化模型的棉田地表残膜识别方法。以4JMLE-210型残膜回收机工作后棉田地表残膜为研究对象,在不同时间段采集地表残膜图像900幅,通过透... 为实现残膜回收机在自然环境中快速、准确地识别棉田地表残膜目标,本文提出了一种基于DCA-YOLO 11轻量化模型的棉田地表残膜识别方法。以4JMLE-210型残膜回收机工作后棉田地表残膜为研究对象,在不同时间段采集地表残膜图像900幅,通过透视变换、图像裁剪、数据清洗、数据增强等预处理,最终得到5215幅残膜样本图像,按照4∶1划分为训练集和测试集,实现了对棉田地表残膜的数据集构建。通过在YOLO 11模型主干网络中增加深度可分离卷积(DWConv)模块代替通用卷积(Conv)模块,用于减少计算复杂度和参数量;通过在输出检测端末尾加入CBAM卷积块注意力机制模块来提高模型的感知能力,减少边缘与背景干扰;通过用ADown模块替换主干网络中的Conv模块,实现残膜特征图不同层之间的下采样,减少特征图空间维度,保留关键信息来提高残膜目标检测准确性。试验结果表明,在复杂自然环境下,DCA-YOLO 11模型精确率P为81.9%,召回率R为80.9%,平均精度均值mAP(重叠率0.5)为86.7%,参数量为2.20×10^(6),处理速度为80 f/s。通过对不同模型进行对比试验,DCA-YOLO 11模型检测精确率比YOLO v10、YOLO v9、YOLO v8分别高2.9、2.3、3.8个百分点,召回率比YOLO v10、YOLO v9、YOLO v8分别高2.0、1.0、1.8个百分点,处理速度比YOLO v9、YOLO v8分别提升12.7%、14.2%,略低于YOLO v10。DCA-YOLO 11模型在保证精度的同时,模型最小,参数量最少,证明其轻量化与优越性。模型通过泛化性试验,其在验证数据集上的检测结果,R^(2)为0.72,平均绝对误差和均方根误差分别为4.92个和2.72个,提出的DCA-YOLO 11轻量化模型泛化性较好。该研究可为残膜回收机械在复杂环境下精准、高效捡拾残膜以及残膜回收机回收率车载视觉估测提供理论依据与数据基础。 展开更多
关键词 残膜识别 YOLO 11模型 目标检测 模型轻量化
在线阅读 下载PDF
基于YOLOv8n改进的水稻病害轻量化检测 被引量:3
16
作者 郭丽峰 黄俊杰 +5 位作者 吴禹竺 王思吉 王轶哲 包羽健 苏中滨 刘宏新 《农业工程学报》 北大核心 2025年第8期156-164,共9页
为解决水稻病害检测中存在的小目标特征提取困难、复杂环境下检测精度不高的问题以及在边缘化设备上实现高效实时检测,该研究提出了一种轻量化水稻病害识别方法YOLOv8-DiDL。该方法通过引入倒残差移动模块(inverted residual mobile blo... 为解决水稻病害检测中存在的小目标特征提取困难、复杂环境下检测精度不高的问题以及在边缘化设备上实现高效实时检测,该研究提出了一种轻量化水稻病害识别方法YOLOv8-DiDL。该方法通过引入倒残差移动模块(inverted residual mobile block,iRMB)增强小目标特征捕捉能力,采用变形卷积模块DCNv2(deformable convolutional networks)优化目标几何变化适应性,结合采样算子DySample(dynamic sample)算法提升复杂环境适应能力,并改进快速空间金字塔池化模块(spatial pyramid pooling fast,SPPF)为大核分离卷积注意力模块(large separable kernel attention,LSKA)增强多尺度特征融合。试验结果表明,改进的YOLOv8-DiDL模型准确率、召回率和平均精度均值分别为91.4%、83.5%、90.8%;与原始基础网络YOLOv8n相比分别提升7.0、0.5、2.5个百分点,模型权重降低9.7%,每秒浮点运算次数提升7.4%。该研究通过改进模型显著提高了水稻病害检测的精度和部署效率,为智能化农业的实时病害监测提供了技术基础。 展开更多
关键词 水稻 病害 目标检测 YOLOv8n改进模型 卷积神经网络 模型轻量化设计
在线阅读 下载PDF
基于轻量化卷积神经网络车载雷达图像目标识别方法 被引量:1
17
作者 李家强 汪星宇 +1 位作者 陈金立 姚昌华 《雷达科学与技术》 北大核心 2025年第1期82-91,100,共11页
针对车载毫米波雷达距离-方位图像细节模糊、目标占比小,卷积神经网络模型复杂难以在端侧部署的问题,本文提出了一种基于轻量化卷积神经网络YOLOv5s的车载雷达图像目标识别方法。首先结合Ghost卷积设计轻量化解耦头,并行处理检测与分类... 针对车载毫米波雷达距离-方位图像细节模糊、目标占比小,卷积神经网络模型复杂难以在端侧部署的问题,本文提出了一种基于轻量化卷积神经网络YOLOv5s的车载雷达图像目标识别方法。首先结合Ghost卷积设计轻量化解耦头,并行处理检测与分类问题;其次设计融合注意力机制的Concat_att模块并引入更具边界框定位敏感性的网络损失函数EIoU Loss,充分提取特征图中小目标细节信息,加速网络收敛,提升网络精度;最后通过Slim剪枝进一步压缩模型存储空间和计算量。实验结果表明,当模型大小缩减至原始YOLOv5s网络的76.8%时,mAP@0.5与mAP@0.5:0.95较原始网络分别提升了2.7%和2.8%,适用于小目标检测,并能同时满足目标识别精度与实时性要求,适合部署至车载嵌入式系统中。 展开更多
关键词 雷达图像 YOLOv5s 轻量化 注意力机制 模型剪枝
在线阅读 下载PDF
基于特征融合的复杂场景树种跨域泛化分类模型
18
作者 陈广胜 温林郅 +3 位作者 张文均 李超 于鸣 景维鹏 《林业科学》 北大核心 2025年第4期33-45,共13页
【目的】针对不同区域因气候、土壤等生态因子差异导致的域偏移问题,提出一种基于全局-局部特征融合的单域泛化方法,提升复杂森林场景下无标签树种识别的泛化性能,为跨域树种分类研究提供理论依据和实践支持。【方法】选取德国巴登-符... 【目的】针对不同区域因气候、土壤等生态因子差异导致的域偏移问题,提出一种基于全局-局部特征融合的单域泛化方法,提升复杂森林场景下无标签树种识别的泛化性能,为跨域树种分类研究提供理论依据和实践支持。【方法】选取德国巴登-符腾堡州南部和中国黄山市祁门县西部为源域,德国图林根州中部和中国黄山市祁门县东部为目标域,构建一种全局-局部特征融合网络(HUFNet)模型进行树种分类,HUFNet模型包含基于CNN的编码器层、基于Transformer的解码器层、全局-局部特征融合机制(GLAFE)、特征精炼头(FRH)和边界优化模块(ERV)。模型经源域数据集训练后,在目标域上测试验证其泛化能力,实现复杂场景跨域树种分类。【结果】通过多个源域和目标域数据集的对比验证,HUFNet模型在目标域HainichUAV数据集上对针叶和阔叶树种的分类总体准确率(OA)为75.1%,平均交并比(mIoU)为58.3%,相比基于自注意力机制的分类架构分别提升13.7%与11.7%。在目标域HuangshanEast数据集上,HUFNet模型的OA为71.7%,mIoU为56.8%,相比ViT-R50作为编码器的混合架构,OA提升1.2%。【结论】HUFNet模型的跨域树种分类性能明显提升,不仅保持了高精度的识别能力,而且在目标域上展现出强大的跨域泛化能力,同时大幅降低了模型的时间复杂度和空间复杂度,适用于资源受限的环境。该模型基于全局-局部特征融合的单域泛化方法,为跨域树种分类提供了新的研究思路。 展开更多
关键词 遥感影像 树种分类 单域泛化 语义分割 轻量化模型
在线阅读 下载PDF
一种云平台中的异常检测轻量化模型智能构建方案
19
作者 周颖杰 杨敏 +4 位作者 吴迪 刘凡兴 赵伟 邓怡然 吕建成 《计算机研究与发展》 北大核心 2025年第10期2481-2494,共14页
通过全面监控和分析云平台中的各类访问与操作,及时准确地发现潜在的异常行为,对保障云服务的安全高效运行具有重要意义.云平台中存在大量异常检测任务,现有方法通常需要针对性地对各个任务进行专门设计和调优,不具备对相关异常检测任... 通过全面监控和分析云平台中的各类访问与操作,及时准确地发现潜在的异常行为,对保障云服务的安全高效运行具有重要意义.云平台中存在大量异常检测任务,现有方法通常需要针对性地对各个任务进行专门设计和调优,不具备对相关异常检测任务通用的模型构建能力.同时,这一过程高度依赖机器学习相关专业知识,使得领域专家难以构建出适用于实际任务的有效模型.针对上述问题,提出了一种云平台中的异常检测轻量化模型智能构建方案.该方案相较于现有技术:1)支持不同类型的云平台异常检测任务,领域专家仅需提供任务相关基本配置信息,即可基于该方案快速自助地搭建面向目标任务的异常检测模型;2)能使专家在具备尽可能少的机器学习和深度学习知识情况下,通过特征自动构造、特征自动优化和模型超参数自动优化等实现目标异常任务的轻量化模型智能构建.基于大规模真实云场景所收集数据的案例分析和实验结果表明,所提出方案能针对相关异常检测任务快速自助地搭建模型并具备良好的检测能力. 展开更多
关键词 云平台 异常行为 异常检测 轻量化模型 智能构建
在线阅读 下载PDF
基于深度学习和模型压缩技术的轻量级煤矿人车检测模型——以贵州地区煤矿为例 被引量:2
20
作者 解北京 李恒 +3 位作者 栾铮 雷振 李晓旭 李卓 《煤炭学报》 北大核心 2025年第2期1393-1408,共16页
煤矿工人和载人车辆(煤矿人车)的智能识别是视频监控系统的重要组成部分,也是煤矿智能化发展的关键任务。然而,煤矿人车检测场景较为复杂,大型人车检测模型部署在有限的计算设备上难以实现,如何在模型检测性能和检测效率之间取得平衡存... 煤矿工人和载人车辆(煤矿人车)的智能识别是视频监控系统的重要组成部分,也是煤矿智能化发展的关键任务。然而,煤矿人车检测场景较为复杂,大型人车检测模型部署在有限的计算设备上难以实现,如何在模型检测性能和检测效率之间取得平衡存在诸多挑战。以贵州地区煤矿视频监控数据集为例,提出了一种基于深度学习和模型压缩技术的轻量级煤矿人车检测模型,该模型精准实时的完成了煤矿人车检测任务,对网络进行瘦身的同时几乎没有损失检测性能。具体来说,在网络模型设计阶段,以YOLOv8s为基线提出了一种名为FCW-YOLO的煤矿人车轻量级检测模型,首先将Faster-Block和坐标注意力和开发到网络的特征提取模块中,设计了一种新颖的C2f-Faster-CA轻量级架构,旨在减少网络的冗余通道同时自适应捕捉全局关键信息;其次,采用了WIOU边界回归损失函数以增加模型对普通质量样本的关注,降低了训练样本不平衡带来的回归误差等问题。在模型压缩阶段,联动剪枝算法对提出的FCW-YOLO模型进行通道级别的稀疏,模型可自动识别不重要的通道并对其进行删减,实现了煤矿人车检测模型二次轻量化设计FCWP-YOLO。在自建的煤矿人车检测数据集上的结果表明,提出的模型参数量,计算量和模型大小分别为2.3 M,4.0 GFLOPs,6.0 MB,对比基线模型分别实现了4.9倍、4.7倍、4.4倍的压缩效果,平均检测精度为88.7%,提高了1.1%,每张图像的处理时间仅为5.6 ms。对比多种轻量级架构和先进的检测模型,该方法精度表现优异,计算成本更低,实时性能更好,为资源受限的煤矿场景提供了一种可行的煤矿人车检测方法,满足煤矿视频监控部署要求,可为煤矿人车智能巡检任务提供实时预警。 展开更多
关键词 煤矿工人检测 煤矿载人车辆检测 深度学习 模型压缩 轻量级架构
在线阅读 下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部