<正>A novel neurochip based on light addressable potentiometric sensor (LAPS) is designed.Using its light addressable characteristic.The problems of the limitations of restricted discrete active sites of current...<正>A novel neurochip based on light addressable potentiometric sensor (LAPS) is designed.Using its light addressable characteristic.The problems of the limitations of restricted discrete active sites of current neurochips,such as microelectrode array and field effect transistor array can be settled easily.Based on the theoretical analysis of the interface between cells and LAPS,spontaneously discharges of hippocampal neurons induced by Mg~ 2+)-free media treatment were recorded by LAPS.The results demonstrate that this kind of neurochip has potential to monitor electrophysiology of cultured cells in a non-invasive way.展开更多
Neurochip based on light-addressable potentiometric sensor(LAPS),whose sensing elements are excitable cells,can monitor electrophysiological properties of cultured neuron networks with cellular signals well analyzed.H...Neurochip based on light-addressable potentiometric sensor(LAPS),whose sensing elements are excitable cells,can monitor electrophysiological properties of cultured neuron networks with cellular signals well analyzed.Here we report a kind of neurochip with rat pheochromocytoma(PC12) cells hybrid with LAPS and a method of de-noising signals based on wavelet transform.Cells were cultured on LAPS for several days to form networks,and we then used LAPS system to detect the extracellular potentials with signals de-noised according to decomposition in the time-frequency space.The signal was decomposed into various scales,and coefficients were processed based on the properties of each layer.At last,signal was reconstructed based on the new coefficients.The results show that after de-noising,baseline drift is removed and signal-to-noise ratio is increased.It suggests that the neurochip of PC12 cells coupled to LAPS is stable and suitable for long-term and non-invasive measurement of cell electrophysiological properties with wavelet transform,taking advantage of its time-frequency localization analysis to reduce noise.展开更多
The light-addressable potentiometric sensor (LAPS) is a semiconductor-based cellular biosensor with an electrolyte-insulator-semiconductor (EIS) structure.By depositing biocompatible layers on the sensing surface fo...The light-addressable potentiometric sensor (LAPS) is a semiconductor-based cellular biosensor with an electrolyte-insulator-semiconductor (EIS) structure.By depositing biocompatible layers on the sensing surface for cell culture, it can be used to detect bioelectrical parameters of cells.The characteristic curve for photocurrent versus applied bias voltage to the system shows a current-voltage curve (Ⅰ-Ⅴcurve).This technique can be used to detect the action potential changes towards different drugs based on the bias voltage dependence of an optical current,and provides a dynamic system by scanning light beam at the very cell on the sensor device.The LAPS overcomes the limitation of recording sites,but high spatial resolution and sensitivity are also paramount.This paper discussed a novel structure of LAPS array for extracellular monitoring to decrease potential noise level.Both characteristics of active recording array areas and cell culture conditions are measured.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.30270387,No.30570492)the Project of State Key Laboratory of Transducer Technology of China(Grant No.SKT0403)the Foundation for the Bureau of Zhejiang Province of China(Grant No.20040197).
文摘<正>A novel neurochip based on light addressable potentiometric sensor (LAPS) is designed.Using its light addressable characteristic.The problems of the limitations of restricted discrete active sites of current neurochips,such as microelectrode array and field effect transistor array can be settled easily.Based on the theoretical analysis of the interface between cells and LAPS,spontaneously discharges of hippocampal neurons induced by Mg~ 2+)-free media treatment were recorded by LAPS.The results demonstrate that this kind of neurochip has potential to monitor electrophysiology of cultured cells in a non-invasive way.
基金Project supported by the National Natural Science Foundation of China (Nos 30700167 and 60725102)the Project of State Key Laboratory of Transducer Technology of China (No SKT0702)+1 种基金the Zhejiang Provincial Natural Science Foundation of China (No Y2080673)the Scientific Research Fund of the Education Department of Zhejiang Province, China (No Y200909323)
文摘Neurochip based on light-addressable potentiometric sensor(LAPS),whose sensing elements are excitable cells,can monitor electrophysiological properties of cultured neuron networks with cellular signals well analyzed.Here we report a kind of neurochip with rat pheochromocytoma(PC12) cells hybrid with LAPS and a method of de-noising signals based on wavelet transform.Cells were cultured on LAPS for several days to form networks,and we then used LAPS system to detect the extracellular potentials with signals de-noised according to decomposition in the time-frequency space.The signal was decomposed into various scales,and coefficients were processed based on the properties of each layer.At last,signal was reconstructed based on the new coefficients.The results show that after de-noising,baseline drift is removed and signal-to-noise ratio is increased.It suggests that the neurochip of PC12 cells coupled to LAPS is stable and suitable for long-term and non-invasive measurement of cell electrophysiological properties with wavelet transform,taking advantage of its time-frequency localization analysis to reduce noise.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 30270387, No. 30570492);the Project of State Key Laboratory of Transducer Technology of China (Grant No. SKT0403);the Foundation for the Bureau of Zhejiang Province of China (Grant No. 20040197).
文摘The light-addressable potentiometric sensor (LAPS) is a semiconductor-based cellular biosensor with an electrolyte-insulator-semiconductor (EIS) structure.By depositing biocompatible layers on the sensing surface for cell culture, it can be used to detect bioelectrical parameters of cells.The characteristic curve for photocurrent versus applied bias voltage to the system shows a current-voltage curve (Ⅰ-Ⅴcurve).This technique can be used to detect the action potential changes towards different drugs based on the bias voltage dependence of an optical current,and provides a dynamic system by scanning light beam at the very cell on the sensor device.The LAPS overcomes the limitation of recording sites,but high spatial resolution and sensitivity are also paramount.This paper discussed a novel structure of LAPS array for extracellular monitoring to decrease potential noise level.Both characteristics of active recording array areas and cell culture conditions are measured.
基金supported by the National Natural Science Foundation of China(22034003,21974059,and 22174063)the Excellent Research Program of Nanjing University(ZYJH004)the State Key Laboratory of Analytical Chemistry for Life Science(5431ZZXM2203)。