Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk...Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk materials owing to the atomic nature of 2D materials.Plasmonic nanostructures are usually integrated with 2D materials to enhance the light–matter interactions,offering great opportunities for both fundamental research and technological applications.Nanoparticle-on-mirror(NPo M)structures with extremely confined optical fields are highly desired in this aspect.In addition,2D materials provide a good platform for the study of plasmonic fields with subnanometer resolution and quantum plasmonics down to the characteristic length scale of a single atom.A focused and up-to-date review article is highly desired for a timely summary of the progress in this rapidly growing field and to encourage more research efforts in this direction.In this review,we will first introduce the basic concepts of plasmonic modes in NPo M structures.Interactions between plasmons and quasi-particles in 2D materials,e.g.,excitons and phonons,from weak to strong coupling and potential applications will then be described in detail.Related phenomena in subnanometer metallic gaps separated by 2D materials,such as quantum tunneling,will also be touched.We will finally discuss phenomena and physical processes that have not been understood clearly and provide an outlook for future research.We believe that the hybrid systems of2D materials and NPo M structures will be a promising research field in the future.展开更多
Anisotropic hyperbolic phonon polaritons(PhPs)in natural biaxial hyperbolic materialα-MoO_(3) has opened up new avenues for mid-infrared nanophotonics,while active tunability ofα-MoO_(3) PhPs is still an urgent prob...Anisotropic hyperbolic phonon polaritons(PhPs)in natural biaxial hyperbolic materialα-MoO_(3) has opened up new avenues for mid-infrared nanophotonics,while active tunability ofα-MoO_(3) PhPs is still an urgent problem necessarily to be solved.In this study,we present a theoretical demonstration of actively tuningα-MoO_(3) PhPs using phase change material VO_(2) and graphene.It is observed thatα-MoO_(3) PhPs are greatly dependent on the propagation plane angle of PhPs.The insulator-to-metal phase transition of VO_(2) has a significant effect on the hybridization PhPs of theα-MoO_(3)/VO_(2) structure and allows to obtain actively tunableα-MoO_(3) PhPs,which is especially obvious when the propagation plane angle of PhPs is 900.Moreover,when graphene surface plasmon sources are placed at the top or bottom ofα-MoO_(3) inα-MoO_(3)/VO_(2)structure,tunable coupled hyperbolic plasmon-phonon polaritons inside its Reststrahlen bands(RB s)and surface plasmonphonon polaritons outside its RBs can be achieved.In addition,the above-mentionedα-MoO_(3)-based structures also lead to actively tunable anisotropic spontaneous emission(SE)enhancement.This study may be beneficial for realization of active tunability of both PhPs and SE ofα-MoO_(3),and facilitate a deeper understanding of the mechanisms of anisotropic light-matter interaction inα-MoO_(3) using functional materials.展开更多
The wave-particle duality of light is a controversial topic in modern physics. In this context, this work highlights the ability of the wave-nature of light on its own to account for the conservation of energy in ligh...The wave-particle duality of light is a controversial topic in modern physics. In this context, this work highlights the ability of the wave-nature of light on its own to account for the conservation of energy in light-matter interaction. Two simple fundamental properties of light as wave are involved: its period and its power P. The power P depends only on the amplitude of the wave’s electric and magnetic fields (Poynting’s vector), and can easily be measured with a power sensor for visible and infrared lasers. The advantage of such a wave-based approach is that it unveils unexpected effects of light’s power P capable of explaining numerous results published in current scientific literature, of correlating phenomena otherwise considered as disjointed, and of making predictions on ways to employ the electromagnetic (EM) waves which so far are unexplored. In this framework, this work focuses on determining the magnitude of the time interval that, coupled with light’s power P, establishes the energy conserved in the exchange of energy between light and matter. To reach this goal, capacitors were excited with visible and IR lasers at variable average power P. As the result of combining experimental measurements and simulations based on the law of conservation of energy, it was found that the product of the period of the light by its power P fixes the magnitude of the energy conserved in light’s interaction with the capacitors. This finding highlights that the energy exchanged is defined in the time interval equal to the period of the light’s wave. The validity of the finding is shown to hold in light’s interaction with matter in general, e.g. in the photoelectric effect with x-rays, in the transfer of electrons between energy levels in semiconducting interfaces of field effect transistors, in the activation of photosynthetic reactions, and in the generation of action potentials in retinal ganglion cells to enable vision in vertebrates. Finally, the validity of the finding is investigated in the low frequency spectrum of the EM waves by exploring possible consequences in microwave technology, and in harvesting through capacitors the radio waves dispersed in the environment after being used in telecommunications as a source of usable electricity.展开更多
In this Letter,we explore the interplay between topological defects and resonant phenomena in photonic crystal slabs,focusing on quasi-flatband resonances and bound states in the continuum(BICs).We identify anisotropi...In this Letter,we explore the interplay between topological defects and resonant phenomena in photonic crystal slabs,focusing on quasi-flatband resonances and bound states in the continuum(BICs).We identify anisotropic quasi-flatband resonances and isotropic quasi-flatband symmetry-protected BICs that exist in coupled topological defects characterized by nontrivial 2D Zak phases,originating from monopole,dipole,and quadrupole corner modes within second-order topological insulator systems.These topological defect modes,whose band structures are described using a tight-binding model,exhibit distinctive radiative behavior due to their symmetry and multipolar characteristics.Through far-field excitation analysis,we demonstrate the robustness and accessibility of these modes in terms of angular and spectral stability.Furthermore,we investigate potential applications of the quasi-flatband resonances in light-matter interactions,including optical forces,second-harmonic generation,and strong coupling,which exhibit robust performance under varying illumination angles.These findings offer new opportunities for precise control over light-matter interactions.展开更多
There has been a perpetual pursuit of improved sensitivity and reproducibility in surface-enhanced Raman scattering(SERS)devices.The two-dimensional material-based,metal-free SERS platform has emerged as a promising o...There has been a perpetual pursuit of improved sensitivity and reproducibility in surface-enhanced Raman scattering(SERS)devices.The two-dimensional material-based,metal-free SERS platform has emerged as a promising option due to the atomically flat surface and diverse surface electronic states.However,the inherently low light absorption efficiency and limited electronic state density lead to unsatisfactory sensitivity.Here,a metal-free,reusable,and plasma-treated graphene-MoS_(2)heterostructure as a SERS platform for high-sensitivity molecule detection is proposed.The heterostructure exhibits excellent SERS performance with a limit of detection as low as 10^(−9) M for probe molecules.The plasma treatment changes the electronic and structural properties of the heterostructures,increasing the charge transfer(CT),facilitated by the modified surface chemistry and light absorption rate,resulting in a more effective light-matter coupling and stronger signal enhancement.Furthermore,the structural disorders are created by the plasma irradiation,leading to the generation of local dipoles and hence enhancing the photoinduced CT.The results provide alternative avenues for developing low-cost and high-performance SERS devices.展开更多
Light-matter interactions are frequently perceived as predominantly influenced by the electric field,with the magnetic component of light often overlooked.Nonetheless,the magnetic field plays a pivotal role in various...Light-matter interactions are frequently perceived as predominantly influenced by the electric field,with the magnetic component of light often overlooked.Nonetheless,the magnetic field plays a pivotal role in various optical processes,including chiral light-matter interactions,photon-avalanching,and forbidden photochemistry,underscoring the significance of manipulating magnetic processes in optical phenomena.Here,we explore the ability to control the magnetic light and matter interactions at the nanoscale.In particular,we demonstrate experimentally,using a plasmonic nanostructure,the transfer of energy from the magnetic nearfield to a nanoparticle,thanks to the subwavelength magnetic confinement allowed by our nano-antenna.This control is made possible by the particular design of our plasmonic nanostructure,which has been optimized to spatially decouple the electric and magnetic components of localized plasmonic fields.Furthermore,by studying the spontaneous emission from the Lanthanide-ions doped nanoparticle,we observe that the measured field distributions are not spatially correlated with the experimentally estimated electric and magnetic local densities of states of this antenna,in contradiction with what would be expected from reciprocity.We demonstrate that this counter-intuitive observation is,in fact,the result of the different optical paths followed by the excitation and emission of the ions,which forbids a direct application of the reciprocity theorem.展开更多
High-index dielectric nanoparticles supporting strong Mie resonances,such as silicon(Si)nanoparticles,provide a platform for manipulating optical fields at the subwavelength scale.However,in general,the quality factor...High-index dielectric nanoparticles supporting strong Mie resonances,such as silicon(Si)nanoparticles,provide a platform for manipulating optical fields at the subwavelength scale.However,in general,the quality factors of Mie resonances supported by an isolated nanoparticle are not sufficient for realizing strong light-matter interaction.Here,we propose the use of dielectric-metal hybrid nanocavities composed of Si nanoparticles and silicon nitride/silver(Si_(3)N_(4)∕Ag)heterostructures to improve light-matter interaction.First,we demonstrate that the nonlinear optical absorption of the Si nanoparticle in a Si∕Si_(3)N_(4)∕Ag hybrid nanocavity can be greatly enhanced at the magnetic dipole resonance.The Si∕Si_(3)N_(4)∕Ag nanocavity exhibits luminescence burst at substantially lower excitation energy(~20.5 pJ)compared to a Si nanoparticle placed on a silica substrate(~51.3 pJ).The luminescence intensity is also enhanced by an order of magnitude.Second,we show that strong exciton-photon coupling can be realized when a tungsten disulfide(WS2)monolayer is inserted into a Si∕Si_(3)N_(4)∕Ag nanocavity.When such a system is excited by using s-polarized light,the optical resonance supported by the nanocavity can be continuously tuned to sweep across the two exciton resonances of the WS_(2)monolayer by simply varying the incident angle.As a result,Rabi splitting energies as large as~146.4 meV and~110 meV are observed at the A-and B-exciton resonances of the WS_(2)monolayer,satisfying the criterion for strong exciton-photon coupling.The proposed nanocavities provide,to our knowledge,a new platform for enhancing light-matter interaction in multiple scenarios and imply potential applications in constructing nanoscale photonic devices.展开更多
Two-dimensional materials are a promising solution for next-generation electronic and optoelectronic devices due to their unique properties.Owing to the atomic thickness of 2D materials,the light-matter interaction le...Two-dimensional materials are a promising solution for next-generation electronic and optoelectronic devices due to their unique properties.Owing to the atomic thickness of 2D materials,the light-matter interaction length in 2D materials is much shorter than that in bulk materials,which limits the performance of optoelectronic devices composed of 2D materials.To improve the light-matter interactions,optical micro/nano architectures have been introduced into 2D material optoelectronic devices.In this review,we present a concise introduction and discussion of various strategies for the enhancement of lightmatter interaction in 2D materials,namely,the plasmonic effect,waveguide,optical cavity,and reflection architecture.We have outlined the current advances in high-performance 2D material optoelectronic devices(eg,photodetectors,electrooptic modulators,light-emitting diodes,and molecular sensors)assisted by these enhancement strategies.Finally,we have discussed the future challenges and opportunities of micro/nano photonic structure designs in 2D material devices.展开更多
Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations...Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations remain in unit-level reconfiguration,multiaxial force and motion sensing,and robust operation across dynamically changing or irregular surfaces.Herein,we develop a reconfigurable omnidirectional triboelectric whisker sensor array(RO-TWSA)comprising multiple sensing units that integrate a triboelectric whisker structure(TWS)with an untethered hydro-sealing vacuum sucker(UHSVS),enabling reversibly portable deployment and omnidirectional perception across diverse surfaces.Using a simple dual-triangular electrode layout paired with MXene/silicone nanocomposite dielectric layer,the sensor unit achieves precise omnidirectional force and motion sensing with a detection threshold as low as 0.024 N and an angular resolution of 5°,while the UHSVS provides reliable and reversible multi-surface anchoring for the sensor units by involving a newly designed hydrogel combining high mechanical robustness and superior water absorption.Extensive experiments demonstrate the effectiveness of RO-TWSA across various interactive scenarios,including teleoperation,tactile diagnostics,and robotic autonomous exploration.Overall,RO-TWSA presents a versatile and high-resolution tactile interface,offering new avenues for intelligent perception and interaction in complex real-world environments.展开更多
Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other field...Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other fields.Nevertheless,due to the tendency of1,4-benzenedicarboxylic acid(BDC)to rotate within the framework,MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties.In this study,efficient luminescence of MIL-140A nanocrystals(NCs)with BDC rotors as ligands is achieved by pressure treatment strategy.Pressure treatment effectively modulates the pore structure of the framework,enhancing the interactions between the N,N-dimethylformamide vip molecules and the BDC ligands.The enhanced host-vip interaction contributes to the structural rigidity of the MOF,thereby suppressing the rotation-induced excited-state energy loss.As a result,the pressure-treated MIL-140A NCs displayed bright blue-light emission,with the photoluminescence quantum yield increasing from an initial 6.8%to 69.2%.This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs,offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties.展开更多
Chirality, which describes the broken mirror symmetry in geometric structures, exists macroscopically in our daily life as well as microscopically down to molecular levels. Correspondingly, chiral molecules interact d...Chirality, which describes the broken mirror symmetry in geometric structures, exists macroscopically in our daily life as well as microscopically down to molecular levels. Correspondingly, chiral molecules interact differently with circularly polarized light exhibiting opposite handedness(left-handed and right-handed). However, the interaction between chiral molecules and chiral light is very weak. In contrast, artificial chiral plasmonic structures can generate "super-chiral" plasmonic near-field, leading to enhanced chiral light-matter(or chiroptical) interactions. The "super-chiral" near-field presents different amplitude and phase under opposite handedness incidence, which can be utilized to engineer linear and nonlinear chiroptical interactions. Specifically,in the interaction between quantum emitters and chiral plasmonic structures, the chiral hot spots can favour the emission with a specific handedness. This article reviews the state-of-the-art research on the design, fabrication and chiroptical response of different chiral plasmonic nanostructures or metasurfaces. This review also discusses enhanced chiral light-matter interactions that are essential for applications like chirality sensing, chiral selective light emitting and harvesting. In the final part, the review ends with a perspective on future directions of chiral plasmonics.展开更多
Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling ...Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling the automatic derivation of analytical expressions for the eigenmatrix elements via symbolic computation,eliminating the need for tedious manual calculations.Using this approach,we investigate the impact of magnetic hysteresis on magnon-magnon coupling in a system with interlayer Dzyaloshinskii-Moriya interaction(DMI).The magnetic hysteresis leads to an asymmetric magnetic field dependence of the resonance frequency and alters the number of degeneracy points between the pure optical and acoustic modes.Moreover,it can result in the coupling strength at the gap of the f–H phase diagram being nearly vanishing,contrary to the conventionally expected maximum.These results deepen the understanding of the effect of interlayer DMI on magnon–magnon coupling and the proposed universal method significantly streamlines the solving process of magnon–magnon coupling problems.展开更多
Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the o...Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the occurrence of Be in BCS is unclear,which seriously hinders the development of pollution control technologies.In order to enhance the understanding of BCS,the occurrence of Be and the microscale interactions with coexisting phases were investigated for the first time.It was found that CaSO_(4)·2H_(2)O and amorphous SiO_(2) are the primary phases of BCS.The simulated experiments of purified materials showed that Be interacted with CaSO_(4)·2H_(2)O and amorphous SiO_(2).Be can enter into the lattice of CaSO_(4)·2H_(2)O mainly as free Be2+.Amorphous SiO_(2) can adsorb Be2+particularly at a pH range of 3–5.The dissolution behavior experiment of BCS shows that about 52%of the Be is readily extracted under acidic conditions,which refers to the Be of independent occurrence.In contrast,the remaining 48%of Be can be extracted only after the CaSO_(4)·2H_(2)O has completely dissolved.Hence,CaSO_(4)·2H_(2)O is identified as the key occurrence phase which determines the highly efficient dissolution of Be.As a result,this study enhances the understanding of BCS and lays the foundation for the development of Be separation technologies.展开更多
Machine learning has provided a huge wave of innovation in multiple fields,including computer vision,medical diagnosis,life sciences,molecular design,and instrumental development.This perspective focuses on the implem...Machine learning has provided a huge wave of innovation in multiple fields,including computer vision,medical diagnosis,life sciences,molecular design,and instrumental development.This perspective focuses on the implementation of machine learning in dealing with light-matter interaction,which governs those fields involving materials discovery,optical characterizations,and photonics technologies.We highlight the role of machine learning in accelerating technology development and boosting scientific innovation in the aforementioned aspects.We provide future directions for advanced computing techniques via multidisciplinary efforts that can help to transform optical materials into imaging probes,information carriers and photonics devices.展开更多
The detection of orbital angular momentum usually relies on optical techniques,which modify the original beam to convert the information carried on its phase into a specific intensity distribution in output.Moreover,t...The detection of orbital angular momentum usually relies on optical techniques,which modify the original beam to convert the information carried on its phase into a specific intensity distribution in output.Moreover,the exploitation of high-intensity beams can result destructive for standard optical elements and setups.A recent publication suggests a solution to overcome all those limitations,by probing highly-intense vortex pulses with a structured reference beam in a strong-field photoionization process.展开更多
The photoexcitation of heterostructures consisting of metallic nanoclusters and a semiconductor has been extensively investigated in relation to interests in photocatalysis and optical devices.The optoelectronic funct...The photoexcitation of heterostructures consisting of metallic nanoclusters and a semiconductor has been extensively investigated in relation to interests in photocatalysis and optical devices.The optoelectronic functions of the heterostructures originate from localized surface plasmon resonance,which can induce electron and resonance energy transfers.While it is well known that photoinduced electronic interaction between a metallic nanocluster and a semiconductor is responsible for the resonance energy transfer,the electron transfer associated with the photoinduced electronic interaction has not been discussed.In this paper,we elucidate the photoexcitation dynamics of a silver nanocluster/TiO_(2) heterostructure using an original first-principles computational approach that explicitly deals with light–matter interactions.It is shown that the photoinduced silver–TiO_(2) electronic interaction causes excited electrons to be directly transferred from the silver nanocluster to the TiO2 layer without passing through the conduction band of the silver nanocluster.展开更多
Metallic nanoparticle(NP)/ceramic composite cermets present desirable broadband absorption of the solar spectrum and thus are the preferred material scheme for constructing cermet-based solar absorbers.However,the eff...Metallic nanoparticle(NP)/ceramic composite cermets present desirable broadband absorption of the solar spectrum and thus are the preferred material scheme for constructing cermet-based solar absorbers.However,the effects of fine nanoparticle structural features on the light-matter interactions in nanocermet layers and corresponding cermet-based solar absorbers are still not well clear until now.Herein,we report a systematical investigation on the effects of W(tungsten)nanoparticle sizes,its concentrations and configurations in an alumina matrix on the optical responses of WeAl_(2)O_(3) nanocermet layers and a solar absorber with double-cermet layers.It is found that to possess admirable light absorption features at high temperatures,it is better to maintain the fine particle size of less than 10 nm,isolated states and suitable separations between them for WeAl_(2)O_(3) nanocermets.Thus,the dominated intrinsic absorption of W NPs,their plasmonic excitation and coupling effects among each other all contribute significantly to the broadband optical performance of the cermet layers and the whole absorber.More importantly,this study demonstrates a valuable criterion for maintaining optical performances of nanocermet layers and cermet-based solar absorbers under heating and thus their thermal robustness.展开更多
Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from...Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from the obstacles of low sensitivity,narrow bandwidth,and asymmetric Fano resonance perturbations.Here,we demonstrated an overcoupled resonator with a high plasmon-molecule coupling coefficient(μ)(OC-Hμresonator)by precisely controlling the radiation loss channel,the resonator-oscillator coupling channel,and the frequency detuning channel.We observed a strong dependence of the sensing performance on the coupling state,and demonstrated that OC-Hμresonator has excellent sensing properties of ultra-sensitive(7.25%nm^(−1)),ultra-broadband(3–10μm),and immune asymmetric Fano lineshapes.These characteristics represent a breakthrough in SEIRA technology and lay the foundation for specific recognition of biomolecules,trace detection,and protein secondary structure analysis using a single array(array size is 100×100μm^(2)).In addition,with the assistance of machine learning,mixture classification,concentration prediction and spectral reconstruction were achieved with the highest accuracy of 100%.Finally,we demonstrated the potential of OC-Hμresonator for SARS-CoV-2 detection.These findings will promote the wider application of SEIRA technology,while providing new ideas for other enhanced spectroscopy technologies,quantum photonics and studying light–matter interactions.展开更多
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first i...The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.展开更多
Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil...Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil, a factorial experiment based on completely randomized design (CRD) with three replications was conducted in 2023. Six wheat cultivars with different Zn efficiency were used. The cultivars were grown under Zn deficiency and adequate conditions. Results showed that in Zn deficiency conditions, with increasing Zn concentration in the roots, Fe concentrations were increased too, while the Cu and Mn concentrations decreased. In the same condition and with increasing Zn concentration in shoots, the concentrations of Fe and Mn decreased, while Cu were increased. However, by increasing Zn concentration, Fe, Cu, and Mn concentrations were increased in Zn deficiency condition in grains, as well as Zn sufficient conditions. RST (root to shoot micronutrient translocation) comparison of cultivars showed that in lack of Zn, the ability of translocation of Zn, Fe, and Mn in Zn-inefficient cultivar from root to shoot was higher than inefficient cultivar. In the same conditions, the capability of Zn-inefficient cultivar in Cu translocation from root to shoot was lower than other cultivars. In general, it seems that in Zn deficiency conditions, there are antagonistic effects among Zn, Cu and Mn and synergistic effects between Zn and Fe in the root. Also, in Zn sufficient conditions, there were synergistic effects among all studies micronutrients which include Zn, Fe, Cu, and Mn.展开更多
基金supported by the National Natural Science Foundation of China(62205183)the Research Grants Council of Hong Kong(ANR/RGC,Ref.No.A-CUHK404/21).
文摘Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk materials owing to the atomic nature of 2D materials.Plasmonic nanostructures are usually integrated with 2D materials to enhance the light–matter interactions,offering great opportunities for both fundamental research and technological applications.Nanoparticle-on-mirror(NPo M)structures with extremely confined optical fields are highly desired in this aspect.In addition,2D materials provide a good platform for the study of plasmonic fields with subnanometer resolution and quantum plasmonics down to the characteristic length scale of a single atom.A focused and up-to-date review article is highly desired for a timely summary of the progress in this rapidly growing field and to encourage more research efforts in this direction.In this review,we will first introduce the basic concepts of plasmonic modes in NPo M structures.Interactions between plasmons and quasi-particles in 2D materials,e.g.,excitons and phonons,from weak to strong coupling and potential applications will then be described in detail.Related phenomena in subnanometer metallic gaps separated by 2D materials,such as quantum tunneling,will also be touched.We will finally discuss phenomena and physical processes that have not been understood clearly and provide an outlook for future research.We believe that the hybrid systems of2D materials and NPo M structures will be a promising research field in the future.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52204258 and 52106099)the Postdoctoral Research Foundation of China (Grant No.2023M743779)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No.2022QN1017)the Key Research Development Projects in Xinjiang Uygur Autonomous Region (Grant No.2022B03003-3)the Shandong Provincial Natural Science Foundation (Grant No.ZR2020LLZ004)。
文摘Anisotropic hyperbolic phonon polaritons(PhPs)in natural biaxial hyperbolic materialα-MoO_(3) has opened up new avenues for mid-infrared nanophotonics,while active tunability ofα-MoO_(3) PhPs is still an urgent problem necessarily to be solved.In this study,we present a theoretical demonstration of actively tuningα-MoO_(3) PhPs using phase change material VO_(2) and graphene.It is observed thatα-MoO_(3) PhPs are greatly dependent on the propagation plane angle of PhPs.The insulator-to-metal phase transition of VO_(2) has a significant effect on the hybridization PhPs of theα-MoO_(3)/VO_(2) structure and allows to obtain actively tunableα-MoO_(3) PhPs,which is especially obvious when the propagation plane angle of PhPs is 900.Moreover,when graphene surface plasmon sources are placed at the top or bottom ofα-MoO_(3) inα-MoO_(3)/VO_(2)structure,tunable coupled hyperbolic plasmon-phonon polaritons inside its Reststrahlen bands(RB s)and surface plasmonphonon polaritons outside its RBs can be achieved.In addition,the above-mentionedα-MoO_(3)-based structures also lead to actively tunable anisotropic spontaneous emission(SE)enhancement.This study may be beneficial for realization of active tunability of both PhPs and SE ofα-MoO_(3),and facilitate a deeper understanding of the mechanisms of anisotropic light-matter interaction inα-MoO_(3) using functional materials.
文摘The wave-particle duality of light is a controversial topic in modern physics. In this context, this work highlights the ability of the wave-nature of light on its own to account for the conservation of energy in light-matter interaction. Two simple fundamental properties of light as wave are involved: its period and its power P. The power P depends only on the amplitude of the wave’s electric and magnetic fields (Poynting’s vector), and can easily be measured with a power sensor for visible and infrared lasers. The advantage of such a wave-based approach is that it unveils unexpected effects of light’s power P capable of explaining numerous results published in current scientific literature, of correlating phenomena otherwise considered as disjointed, and of making predictions on ways to employ the electromagnetic (EM) waves which so far are unexplored. In this framework, this work focuses on determining the magnitude of the time interval that, coupled with light’s power P, establishes the energy conserved in the exchange of energy between light and matter. To reach this goal, capacitors were excited with visible and IR lasers at variable average power P. As the result of combining experimental measurements and simulations based on the law of conservation of energy, it was found that the product of the period of the light by its power P fixes the magnitude of the energy conserved in light’s interaction with the capacitors. This finding highlights that the energy exchanged is defined in the time interval equal to the period of the light’s wave. The validity of the finding is shown to hold in light’s interaction with matter in general, e.g. in the photoelectric effect with x-rays, in the transfer of electrons between energy levels in semiconducting interfaces of field effect transistors, in the activation of photosynthetic reactions, and in the generation of action potentials in retinal ganglion cells to enable vision in vertebrates. Finally, the validity of the finding is investigated in the low frequency spectrum of the EM waves by exploring possible consequences in microwave technology, and in harvesting through capacitors the radio waves dispersed in the environment after being used in telecommunications as a source of usable electricity.
基金supported by the National Key Research and Development Program of China(No.2022YFF0706005)the National Natural Science Foundation of China(Nos.62305387,12272407,62275269,and 62275271)+1 种基金the Natural Science Foundation of Hunan Province(No.2023JJ40683)the National University of Defense Technology(No.ZK23-03)。
文摘In this Letter,we explore the interplay between topological defects and resonant phenomena in photonic crystal slabs,focusing on quasi-flatband resonances and bound states in the continuum(BICs).We identify anisotropic quasi-flatband resonances and isotropic quasi-flatband symmetry-protected BICs that exist in coupled topological defects characterized by nontrivial 2D Zak phases,originating from monopole,dipole,and quadrupole corner modes within second-order topological insulator systems.These topological defect modes,whose band structures are described using a tight-binding model,exhibit distinctive radiative behavior due to their symmetry and multipolar characteristics.Through far-field excitation analysis,we demonstrate the robustness and accessibility of these modes in terms of angular and spectral stability.Furthermore,we investigate potential applications of the quasi-flatband resonances in light-matter interactions,including optical forces,second-harmonic generation,and strong coupling,which exhibit robust performance under varying illumination angles.These findings offer new opportunities for precise control over light-matter interactions.
基金support from the National Natural Science Foundations of China(Nos.51975320 and U23A20627)the Beijing Natural Science Foundation(No.M22011)。
文摘There has been a perpetual pursuit of improved sensitivity and reproducibility in surface-enhanced Raman scattering(SERS)devices.The two-dimensional material-based,metal-free SERS platform has emerged as a promising option due to the atomically flat surface and diverse surface electronic states.However,the inherently low light absorption efficiency and limited electronic state density lead to unsatisfactory sensitivity.Here,a metal-free,reusable,and plasma-treated graphene-MoS_(2)heterostructure as a SERS platform for high-sensitivity molecule detection is proposed.The heterostructure exhibits excellent SERS performance with a limit of detection as low as 10^(−9) M for probe molecules.The plasma treatment changes the electronic and structural properties of the heterostructures,increasing the charge transfer(CT),facilitated by the modified surface chemistry and light absorption rate,resulting in a more effective light-matter coupling and stronger signal enhancement.Furthermore,the structural disorders are created by the plasma irradiation,leading to the generation of local dipoles and hence enhancing the photoinduced CT.The results provide alternative avenues for developing low-cost and high-performance SERS devices.
基金supported by the ERC grant FemtoMagnet(grant no.101087709)the financial support from the Agence Nationale de la Recherche(ANR-20-CE09-0031-01,ANR-22-CE09-0027-04 and ANR-23-ERCC-0005)the Institut de Physique du CNRS(Tremplin@INP 2020).
文摘Light-matter interactions are frequently perceived as predominantly influenced by the electric field,with the magnetic component of light often overlooked.Nonetheless,the magnetic field plays a pivotal role in various optical processes,including chiral light-matter interactions,photon-avalanching,and forbidden photochemistry,underscoring the significance of manipulating magnetic processes in optical phenomena.Here,we explore the ability to control the magnetic light and matter interactions at the nanoscale.In particular,we demonstrate experimentally,using a plasmonic nanostructure,the transfer of energy from the magnetic nearfield to a nanoparticle,thanks to the subwavelength magnetic confinement allowed by our nano-antenna.This control is made possible by the particular design of our plasmonic nanostructure,which has been optimized to spatially decouple the electric and magnetic components of localized plasmonic fields.Furthermore,by studying the spontaneous emission from the Lanthanide-ions doped nanoparticle,we observe that the measured field distributions are not spatially correlated with the experimentally estimated electric and magnetic local densities of states of this antenna,in contradiction with what would be expected from reciprocity.We demonstrate that this counter-intuitive observation is,in fact,the result of the different optical paths followed by the excitation and emission of the ions,which forbids a direct application of the reciprocity theorem.
基金National Natural Science Foundation of China(12174123,12374347)Basic and Applied Basic Research Foundation of Guangdong Province(2022A1515010747)。
文摘High-index dielectric nanoparticles supporting strong Mie resonances,such as silicon(Si)nanoparticles,provide a platform for manipulating optical fields at the subwavelength scale.However,in general,the quality factors of Mie resonances supported by an isolated nanoparticle are not sufficient for realizing strong light-matter interaction.Here,we propose the use of dielectric-metal hybrid nanocavities composed of Si nanoparticles and silicon nitride/silver(Si_(3)N_(4)∕Ag)heterostructures to improve light-matter interaction.First,we demonstrate that the nonlinear optical absorption of the Si nanoparticle in a Si∕Si_(3)N_(4)∕Ag hybrid nanocavity can be greatly enhanced at the magnetic dipole resonance.The Si∕Si_(3)N_(4)∕Ag nanocavity exhibits luminescence burst at substantially lower excitation energy(~20.5 pJ)compared to a Si nanoparticle placed on a silica substrate(~51.3 pJ).The luminescence intensity is also enhanced by an order of magnitude.Second,we show that strong exciton-photon coupling can be realized when a tungsten disulfide(WS2)monolayer is inserted into a Si∕Si_(3)N_(4)∕Ag nanocavity.When such a system is excited by using s-polarized light,the optical resonance supported by the nanocavity can be continuously tuned to sweep across the two exciton resonances of the WS_(2)monolayer by simply varying the incident angle.As a result,Rabi splitting energies as large as~146.4 meV and~110 meV are observed at the A-and B-exciton resonances of the WS_(2)monolayer,satisfying the criterion for strong exciton-photon coupling.The proposed nanocavities provide,to our knowledge,a new platform for enhancing light-matter interaction in multiple scenarios and imply potential applications in constructing nanoscale photonic devices.
基金Innovation and Technology Commission,Grant/Award Number:ITS/390/18Research Grants Council,University Grants Committee,Grant/Award Numbers:14203018,14204616,AoE/P-02/12,N_CUHK438/18。
文摘Two-dimensional materials are a promising solution for next-generation electronic and optoelectronic devices due to their unique properties.Owing to the atomic thickness of 2D materials,the light-matter interaction length in 2D materials is much shorter than that in bulk materials,which limits the performance of optoelectronic devices composed of 2D materials.To improve the light-matter interactions,optical micro/nano architectures have been introduced into 2D material optoelectronic devices.In this review,we present a concise introduction and discussion of various strategies for the enhancement of lightmatter interaction in 2D materials,namely,the plasmonic effect,waveguide,optical cavity,and reflection architecture.We have outlined the current advances in high-performance 2D material optoelectronic devices(eg,photodetectors,electrooptic modulators,light-emitting diodes,and molecular sensors)assisted by these enhancement strategies.Finally,we have discussed the future challenges and opportunities of micro/nano photonic structure designs in 2D material devices.
基金supported by the National Natural Science Foundation of China(General Program)under Grant 52571385National Key R&D Program of China(Grant No.2024YFC2815000 and No.2024YFB3816000)+12 种基金Open Fund of State Key Laboratory of Deep-sea Manned Vehicles(Grant No.2025SKLDMV07)Shenzhen Science and Technology Program(WDZC20231128114452001,JCYJ20240813112107010 and JCYJ20240813111910014)the Tsinghua SIGS Scientific Research Startup Fund(QD2022021C)the Dreams Foundation of Jianghuai Advance Technology Center(2023-ZM 01 Z006)the Ocean Decade International Cooperation Center(ODCC)(GHZZ3702840002024020000026)Shenzhen Key Laboratory of Advanced Technology for Marine Ecology(ZDSYS20230626091459009)Shenzhen Science and Technology Program(No.KJZD20240903100905008)the National Natural Science Foundation of China(No.22305141)Pearl River Talent Program(No.2023QN10C114)General Program of Guangdong Province(No.2025A1515011700)the Guangdong Innovative and Entrepreneurial Research Team Program(2023ZT10C040)Scientific Research Foundation from Shenzhen Finance Bureau(No.GJHZ20240218113600002)Tsinghua University(JC2023001).
文摘Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations remain in unit-level reconfiguration,multiaxial force and motion sensing,and robust operation across dynamically changing or irregular surfaces.Herein,we develop a reconfigurable omnidirectional triboelectric whisker sensor array(RO-TWSA)comprising multiple sensing units that integrate a triboelectric whisker structure(TWS)with an untethered hydro-sealing vacuum sucker(UHSVS),enabling reversibly portable deployment and omnidirectional perception across diverse surfaces.Using a simple dual-triangular electrode layout paired with MXene/silicone nanocomposite dielectric layer,the sensor unit achieves precise omnidirectional force and motion sensing with a detection threshold as low as 0.024 N and an angular resolution of 5°,while the UHSVS provides reliable and reversible multi-surface anchoring for the sensor units by involving a newly designed hydrogel combining high mechanical robustness and superior water absorption.Extensive experiments demonstrate the effectiveness of RO-TWSA across various interactive scenarios,including teleoperation,tactile diagnostics,and robotic autonomous exploration.Overall,RO-TWSA presents a versatile and high-resolution tactile interface,offering new avenues for intelligent perception and interaction in complex real-world environments.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200)the National Natural Science Foundation of China(No.12274177 and 12304261)the China Postdoctoral Science Foundation(No.2024M751076)。
文摘Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other fields.Nevertheless,due to the tendency of1,4-benzenedicarboxylic acid(BDC)to rotate within the framework,MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties.In this study,efficient luminescence of MIL-140A nanocrystals(NCs)with BDC rotors as ligands is achieved by pressure treatment strategy.Pressure treatment effectively modulates the pore structure of the framework,enhancing the interactions between the N,N-dimethylformamide vip molecules and the BDC ligands.The enhanced host-vip interaction contributes to the structural rigidity of the MOF,thereby suppressing the rotation-induced excited-state energy loss.As a result,the pressure-treated MIL-140A NCs displayed bright blue-light emission,with the photoluminescence quantum yield increasing from an initial 6.8%to 69.2%.This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs,offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties.
基金the Singapore National Research Foundation-Agence Nationale de la Recherche(Grant No.NRF2017-NRF-ANR0052DCHIRAL).
文摘Chirality, which describes the broken mirror symmetry in geometric structures, exists macroscopically in our daily life as well as microscopically down to molecular levels. Correspondingly, chiral molecules interact differently with circularly polarized light exhibiting opposite handedness(left-handed and right-handed). However, the interaction between chiral molecules and chiral light is very weak. In contrast, artificial chiral plasmonic structures can generate "super-chiral" plasmonic near-field, leading to enhanced chiral light-matter(or chiroptical) interactions. The "super-chiral" near-field presents different amplitude and phase under opposite handedness incidence, which can be utilized to engineer linear and nonlinear chiroptical interactions. Specifically,in the interaction between quantum emitters and chiral plasmonic structures, the chiral hot spots can favour the emission with a specific handedness. This article reviews the state-of-the-art research on the design, fabrication and chiroptical response of different chiral plasmonic nanostructures or metasurfaces. This review also discusses enhanced chiral light-matter interactions that are essential for applications like chirality sensing, chiral selective light emitting and harvesting. In the final part, the review ends with a perspective on future directions of chiral plasmonics.
基金supported by the National Key Research and Development Program of China (MOST)(Grant No.2022YFA1402800)the Chinese Academy of Sciences (CAS) Presidents International Fellowship Initiative (PIFI)(Grant No.2025PG0006)+3 种基金the National Natural Science Foundation of China (NSFC)(Grant Nos.51831012,12274437,and 52161160334)the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-084)the CAS Youth Interdisciplinary Teamthe China Postdoctoral Science Foundation (Grant No.2025M773402)。
文摘Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling the automatic derivation of analytical expressions for the eigenmatrix elements via symbolic computation,eliminating the need for tedious manual calculations.Using this approach,we investigate the impact of magnetic hysteresis on magnon-magnon coupling in a system with interlayer Dzyaloshinskii-Moriya interaction(DMI).The magnetic hysteresis leads to an asymmetric magnetic field dependence of the resonance frequency and alters the number of degeneracy points between the pure optical and acoustic modes.Moreover,it can result in the coupling strength at the gap of the f–H phase diagram being nearly vanishing,contrary to the conventionally expected maximum.These results deepen the understanding of the effect of interlayer DMI on magnon–magnon coupling and the proposed universal method significantly streamlines the solving process of magnon–magnon coupling problems.
基金supported by the National Natural Science Foundation of China(No.22276219)the foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52121004)+1 种基金the major program Natural Science Foundation of Hunan Province of China(No.2021JC0001)the Fundamental Research Funds for the Central Universities of Central South University(No.2024ZZTS0063).
文摘Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the occurrence of Be in BCS is unclear,which seriously hinders the development of pollution control technologies.In order to enhance the understanding of BCS,the occurrence of Be and the microscale interactions with coexisting phases were investigated for the first time.It was found that CaSO_(4)·2H_(2)O and amorphous SiO_(2) are the primary phases of BCS.The simulated experiments of purified materials showed that Be interacted with CaSO_(4)·2H_(2)O and amorphous SiO_(2).Be can enter into the lattice of CaSO_(4)·2H_(2)O mainly as free Be2+.Amorphous SiO_(2) can adsorb Be2+particularly at a pH range of 3–5.The dissolution behavior experiment of BCS shows that about 52%of the Be is readily extracted under acidic conditions,which refers to the Be of independent occurrence.In contrast,the remaining 48%of Be can be extracted only after the CaSO_(4)·2H_(2)O has completely dissolved.Hence,CaSO_(4)·2H_(2)O is identified as the key occurrence phase which determines the highly efficient dissolution of Be.As a result,this study enhances the understanding of BCS and lays the foundation for the development of Be separation technologies.
基金supported by the Australian Research Council(ARC)Discovery Early Career Researcher Award Scheme(J.Z.,DE180100669).
文摘Machine learning has provided a huge wave of innovation in multiple fields,including computer vision,medical diagnosis,life sciences,molecular design,and instrumental development.This perspective focuses on the implementation of machine learning in dealing with light-matter interaction,which governs those fields involving materials discovery,optical characterizations,and photonics technologies.We highlight the role of machine learning in accelerating technology development and boosting scientific innovation in the aforementioned aspects.We provide future directions for advanced computing techniques via multidisciplinary efforts that can help to transform optical materials into imaging probes,information carriers and photonics devices.
文摘The detection of orbital angular momentum usually relies on optical techniques,which modify the original beam to convert the information carried on its phase into a specific intensity distribution in output.Moreover,the exploitation of high-intensity beams can result destructive for standard optical elements and setups.A recent publication suggests a solution to overcome all those limitations,by probing highly-intense vortex pulses with a structured reference beam in a strong-field photoionization process.
基金This research was supported by JSPS KAKENHI(Grant no.19K15513)MEXT as a social and scientific priority issue(Creation of new functional devices and high-performance materials to support next-generation industries)to be tackled using the post-K computer(ID:hp180196,hp190193)This work mainly used computational resources of the K computer provided by the RIKEN Advanced Institute for Computational Science through the HPCI System Research project(ID:hp180196,hp190193).
文摘The photoexcitation of heterostructures consisting of metallic nanoclusters and a semiconductor has been extensively investigated in relation to interests in photocatalysis and optical devices.The optoelectronic functions of the heterostructures originate from localized surface plasmon resonance,which can induce electron and resonance energy transfers.While it is well known that photoinduced electronic interaction between a metallic nanocluster and a semiconductor is responsible for the resonance energy transfer,the electron transfer associated with the photoinduced electronic interaction has not been discussed.In this paper,we elucidate the photoexcitation dynamics of a silver nanocluster/TiO_(2) heterostructure using an original first-principles computational approach that explicitly deals with light–matter interactions.It is shown that the photoinduced silver–TiO_(2) electronic interaction causes excited electrons to be directly transferred from the silver nanocluster to the TiO2 layer without passing through the conduction band of the silver nanocluster.
基金The authors acknowledge support from the Ten Thousand Talents Plan of Zhejiang Province-Science and Technology Innovation Leader Project(Grant No.2018R52006)National Natural Science Foundation of China(Grant No.11705269,U1732115)+1 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LY17E020012,LY19A040004)the program for Ningbo Municipal Science and Technology Innovative Research Team(Grant No.2016B10005).
文摘Metallic nanoparticle(NP)/ceramic composite cermets present desirable broadband absorption of the solar spectrum and thus are the preferred material scheme for constructing cermet-based solar absorbers.However,the effects of fine nanoparticle structural features on the light-matter interactions in nanocermet layers and corresponding cermet-based solar absorbers are still not well clear until now.Herein,we report a systematical investigation on the effects of W(tungsten)nanoparticle sizes,its concentrations and configurations in an alumina matrix on the optical responses of WeAl_(2)O_(3) nanocermet layers and a solar absorber with double-cermet layers.It is found that to possess admirable light absorption features at high temperatures,it is better to maintain the fine particle size of less than 10 nm,isolated states and suitable separations between them for WeAl_(2)O_(3) nanocermets.Thus,the dominated intrinsic absorption of W NPs,their plasmonic excitation and coupling effects among each other all contribute significantly to the broadband optical performance of the cermet layers and the whole absorber.More importantly,this study demonstrates a valuable criterion for maintaining optical performances of nanocermet layers and cermet-based solar absorbers under heating and thus their thermal robustness.
基金supported by A*STAR under the“Nanosystems at the Edge”program(Grant No.A18A4b0055)Ministry of Education(MOE)under the research grant of R-263-000-F18-112/A-0009520-01-00+1 种基金National Research Foundation Singapore grant CRP28-2022-0038the Reimagine Re-search Scheme(RRSC)Project(Grant A-0009037-02-00&A0009037-03-00)at National University of Singapore.
文摘Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from the obstacles of low sensitivity,narrow bandwidth,and asymmetric Fano resonance perturbations.Here,we demonstrated an overcoupled resonator with a high plasmon-molecule coupling coefficient(μ)(OC-Hμresonator)by precisely controlling the radiation loss channel,the resonator-oscillator coupling channel,and the frequency detuning channel.We observed a strong dependence of the sensing performance on the coupling state,and demonstrated that OC-Hμresonator has excellent sensing properties of ultra-sensitive(7.25%nm^(−1)),ultra-broadband(3–10μm),and immune asymmetric Fano lineshapes.These characteristics represent a breakthrough in SEIRA technology and lay the foundation for specific recognition of biomolecules,trace detection,and protein secondary structure analysis using a single array(array size is 100×100μm^(2)).In addition,with the assistance of machine learning,mixture classification,concentration prediction and spectral reconstruction were achieved with the highest accuracy of 100%.Finally,we demonstrated the potential of OC-Hμresonator for SARS-CoV-2 detection.These findings will promote the wider application of SEIRA technology,while providing new ideas for other enhanced spectroscopy technologies,quantum photonics and studying light–matter interactions.
基金supported by the National Natural Science Foundation of China,Nos.82104560(to CL),U21A20400(to QW)the Natural Science Foundation of Beijing,No.7232279(to XW)the Project of Beijing University of Chinese Medicine,No.2022-JYB-JBZR-004(to XW)。
文摘The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
文摘Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil, a factorial experiment based on completely randomized design (CRD) with three replications was conducted in 2023. Six wheat cultivars with different Zn efficiency were used. The cultivars were grown under Zn deficiency and adequate conditions. Results showed that in Zn deficiency conditions, with increasing Zn concentration in the roots, Fe concentrations were increased too, while the Cu and Mn concentrations decreased. In the same condition and with increasing Zn concentration in shoots, the concentrations of Fe and Mn decreased, while Cu were increased. However, by increasing Zn concentration, Fe, Cu, and Mn concentrations were increased in Zn deficiency condition in grains, as well as Zn sufficient conditions. RST (root to shoot micronutrient translocation) comparison of cultivars showed that in lack of Zn, the ability of translocation of Zn, Fe, and Mn in Zn-inefficient cultivar from root to shoot was higher than inefficient cultivar. In the same conditions, the capability of Zn-inefficient cultivar in Cu translocation from root to shoot was lower than other cultivars. In general, it seems that in Zn deficiency conditions, there are antagonistic effects among Zn, Cu and Mn and synergistic effects between Zn and Fe in the root. Also, in Zn sufficient conditions, there were synergistic effects among all studies micronutrients which include Zn, Fe, Cu, and Mn.