Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yiel...Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.展开更多
The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investiga...The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.展开更多
Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancement...Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancements have been made in the performance of cadmium-free QLEDs.However,several challenges persist in the industrialization of ecofriendly QLED displays.For instance,(1)the poor performance,characterized by low photoluminescence quantum yield(PLQY),unstable ligand,and charge imbalance,cannot be effectively addressed with a solitary strategy;(2)the degradation mechanism,involving emission quenching,morphological inhomogeneity,and field-enhanced electron delocalization remains unclear;(3)the lack of techniques for color patterning,such as optical lithography and transfer printing.Herein,we undertake a specific review of all technological breakthroughs that endeavor to tackle the above challenges associated with cadmium-free QLED displays.We begin by reviewing the evolution,architecture,and operational characteristics of eco-friendly QLEDs,highlighting the photoelectric properties of QDs,carrier transport layer stability,and device lifetime.Subsequently,we focus our attention not only on the latest insights into device degradation mechanisms,particularly,but also on the remarkable technological progress in color patterning techniques.To conclude,we provide a synthesis of the promising prospects,current challenges,potential solutions,and emerging research trends for QLED displays.展开更多
Chronic diabetic wounds,a common and severe complication of diabetes,are characterized by their inability to heal due to impaired blood and oxygen supply.In addition to glycemic control,various clinical treatments suc...Chronic diabetic wounds,a common and severe complication of diabetes,are characterized by their inability to heal due to impaired blood and oxygen supply.In addition to glycemic control,various clinical treatments such as wound dressings,hyperbaric oxygen therapy,and phototherapy have been employed to manage these wounds.Low-level light therapy has emerged as an effective,noninvasive,and painless therapeutic approach for wound management.However,the bulkiness of traditional light sources and the need for frequent clinic visits have limited its widespread adoption.We have developed a wearable,flexible light-emitting bandage with cyanobacterial impregnation(LEB@Cyan).The bioactive bandage is designed to provide sustained oxygen generation and robust photobiomodulation,promoting keratinocyte migration,fibroblast proliferation,and angiogenesis.This addresses the hypoxic conditions and enhances bioenergetic supply to accelerate the healing process of diabetic wounds.In detail,the wound area of diabetic rats treated with LEB@Cyan showed significant reductions of 74.76%and 96.32%compared with that of LEB-treated diabetic rats and untreated diabetic rats,respectively.Such self-oxygenated wearable light-emitting fabric holds great promise for future clinical and commercial applications,potentially revolutionizing the management of chronic diabetic wounds.展开更多
A binary-mixed electron transport layer(ETL)has been reported for constructing solution-processable near-infrared organic light-emitting diodes(NIR OLEDs).Relative to the single-component ETL,the binarymixed ETL compo...A binary-mixed electron transport layer(ETL)has been reported for constructing solution-processable near-infrared organic light-emitting diodes(NIR OLEDs).Relative to the single-component ETL,the binarymixed ETL composed of PDINN:TPBi can enhance the carrier transport capacity,reduce device impedance,and weaken fiuorescence quenching of the emitting layer.By carefully selecting an appropriate luminescent material Y5(a nonfullerene electron acceptor in organic solar cells)and precisely fine-tuning the molecular aggregation in active layer using a mixed solvent,the morphology is optimized and luminescence performance is enhanced,resulting in efficient NIR OLEDs with an emission peak at 890 nm.The experiment showcases a Y5-based near-infrared OLED with a maximum radiance of 34.9 W sr^(-1)m^(-2)and a maximum external quantum efficiency of 0.50%,which is among the highest values reported for nondoped fiuorescent NIR OLEDs with an emission peak over 850 nm.展开更多
The growing environmental concerns regarding rare earth elements in fluorescent powders,along with high production costs,have increased the demand for sustainable alternatives.We propose a promising solution using lum...The growing environmental concerns regarding rare earth elements in fluorescent powders,along with high production costs,have increased the demand for sustainable alternatives.We propose a promising solution using luminescent metal-organic frameworks(LMOFs)with large surface areas and tunable pore structures,combined with organic carbon quantum dots(CQDs).This study develops a novel white lightemitting diode(WLED)fluorescent powder by incorporating yellow-fluorescent quantum dots(CQDs-Y)into blue-emitting LMOF(ZJU-28),forming the composite material CQDs-Y-n@ZJU-28.The composite exhibits excellent thermal and chemical stability,long-term storage performance,and emits warm white light(CIE:0.3277,0.3281)when subjected to excitation at 365 nm,along with an external quantum efficiency(EQE)of 8.85%.Furthermore,it exhibits tunable emission characteristics and promising LED performance,showcasing a color rendering index(CRI)of 78 and a correlated color temperature of 3384 K.The emitted light undergoes minimal deviation in color towards the white end of the spectrum in the temperature range of 277-437 K,making it an ideal candidate for advanced WLED applications.展开更多
Triphenylamine(TPA)is the most promising donor fragment for the construction of long-wavelength thermally activated delayed fluorescence(TADF)emitters owing to its suitable dihedral angle that could enhance radiative ...Triphenylamine(TPA)is the most promising donor fragment for the construction of long-wavelength thermally activated delayed fluorescence(TADF)emitters owing to its suitable dihedral angle that could enhance radiative decay to compete with the serious non-radiative decay.However,the moderate electron-donating capacity of TPA seriously limits the selection of acceptor for constructing longwavelength TADF emitters with narrow bandgaps.To address this issue,in this work,the peripheral benzene of TPA was replaced with 1,4-benzodioxane and anisole to obtain two new electrondonating units N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-N-phenyl-2,3-dihydrobenzo[b][1,4]dioxin-6-amine(TPADBO,−5.02 eV)and 4-methoxy-N-(4-methoxyphenyl)-N-phenylaniline(TPAMO,−5.00 eV),which possess much shallower highest occupied molecule orbital(HOMO)energy levels than the prototype TPA(−5.33 eV).Based on TPA and the modified TPA donor fragments,three TADF emitters were designed and synthesized,namely Py-TPA,Py-TPADBO and Py-TPAMO,with the same acceptor fragment 12-(2,6-diisopropylphenyl)pyrido[2′,3′:5,6]pyrazino[2,3-f][1,10]phenanthroline(Py).Among them,Py-TPAMO exhibits the highest photoluminescence quantum yield of 78.4%and the smallest singlet-triplet energy gap,which is because the introduction of anisole does not cause significant molecule deformation for the excited Py-TPAMO.And Py-TPAMO-based OLEDs successfully realize a maximum external quantum efficiency of 25.5%with the emission peak at 605 nm.This work provides a series of candidate of donor fragments for the development of efficient long-wavelength TADF emitters.展开更多
Colloidal quantum dots(CQDs)are highly regarded for their outstanding photovoltaic characteristics,including excellent color purity,stability,high photoluminescence quantum yield(PLQY),narrow emission spectra,and ease...Colloidal quantum dots(CQDs)are highly regarded for their outstanding photovoltaic characteristics,including excellent color purity,stability,high photoluminescence quantum yield(PLQY),narrow emission spectra,and ease of solution processing.Despite significant progress in quantum dot light-emitting diodes(QLEDs)technology since its inception in 1994,blue QLEDs still fall short in efficiency and lifespan compared to red and green versions.The toxicity concerns associated with Cd/Pb-based quantum dots(QDs)have spurred the development of heavy-metal-free alternatives,such as groupⅡ−Ⅵ(e.g.,ZnSe-based QDs),groupⅢ−Ⅴ(e.g.,InP,GaN QDs),and carbon dots(CDs).In this review,we discuss the key properties and development history of quantum dots(QDs),various synthesis approaches,the role of surface ligands,and important considerations in developing core/shell(C/S)structured QDs.Additionally,we provide an outlook on the challenges and future directions for blue QLEDs.展开更多
A red-emitting phosphor Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) with partial Al^(3+)/P^(5+) substitution on Si^(4+) was synthesized via a simple solid-state method,and the effects of the introduction of the M^(3+/5+)(M=Al,P)...A red-emitting phosphor Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) with partial Al^(3+)/P^(5+) substitution on Si^(4+) was synthesized via a simple solid-state method,and the effects of the introduction of the M^(3+/5+)(M=Al,P)ions on the crystal structure and photoluminescence performance of Ca_(2.91)Si_(2−x)M_(x)O_(7):0.09Eu^(3+) phosphors were investigated.The X-ray diffraction(XRD),energy-dispersive X-ray spectroscopy(EDS),and X-ray photoelectron spectroscopy(XPS)results revealed that the structure of Ca_(3)Si_(2)O_(7) remained the same after the introduction of Al^(3+) and P^(5+) ions.The characteristic emission of Eu^(3+)-doped Ca_(3)Si_(2−x)M_(x)O_(7) phosphors exhibited two main peaks at 617 nm(red)and 593 nm(orange)under excitation at 394 nm,which originated from the^(5)D_(0)→^(7)F_(2)and^(5)D_(0)→^(7)F_(1) electron transitions of Eu^(3+) ions.After the partial substitution of Al^(3+) and P^(5+),the red emission intensities of the Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) phosphors were significantly enhanced by 1.88-and 1.42-fold,respectively,which is attributed to the crystal-field effect around Eu^(3+).Meanwhile,the luminescence intensities of the Ca_(2.91)Si_(1.96)Al_(0.04)O_(7):0.09Eu^(3+) and Ca_(2.91)Si_(1.94)P_(0.06)O_(7):0.09Eu^(3+) phosphors at 210℃ were 79.36%and 77.53%of those at 30°C,respectively,indicating their excellent thermal stability.Moreover,the as-prepared Ca_(2.91)Si_(1.96)Al_(0.04)O_(7):0.09Eu^(3+)and Ca_(2.91)Si_(1.94)P_(0.06)O_(7):0.09Eu^(3+) red-emitting phosphors were combined with a near-ultraviolet chip of 395 nm to fabricate red-light-emitting diode(LED)and white(w)-LED devices with excellent chromaticity features.In summary,Al^(3+)/P^(5+)-substituted Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) can serve as red-emitting phosphors for applications in w-LEDs.展开更多
The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical pro...The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical properties of metal halide perovskites,such as tunable bandgap,narrow emission linewidth,high photoluminescence quantum yield,and particularly,the soft nature of lattice.At present,substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency(EQE)of 24.5%.Herein,we summarize the recent progress in FPeLEDs,focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance.In addition,we present relevant applications of FPeLEDs in displays and beyond.Finally,perspective toward the future development and applications of flexible PeLEDs are also discussed.展开更多
Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the pres...Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.展开更多
Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamp...Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage.展开更多
Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillat...Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillator strengths,thus pro-viding an intriguing platform for optoelectronic applications of light-emitting diodes(LEDs),field-effect transistors(FETs),sin-gle-photon emitters(SPEs),and coherent light sources(CLSs).Moreover,these MoSe_(2) layers can realize strong excitonic emis-sion in the near-infrared wavelengths,which can be combined with the silicon-based integration technologies and further encourage the development of the new generation technologies of on-chip optical interconnection,quantum computing,and quantum information processing.Herein,we overview the state-of-the-art applications of light-emitting devices based on two-dimensional MoSe_(2) layers.Firstly,we introduce recent developments in excitonic emission features from atomically thin MoSe_(2) and their dependences on typical physical fields.Next,we focus on the exciton-polaritons and plasmon-exciton polaritons in MoSe_(2) coupled to the diverse forms of optical microcavities.Then,we highlight the promising applications of LEDs,SPEs,and CLSs based on MoSe_(2) and their heterostructures.Finally,we summarize the challenges and opportunities for high-quality emis-sion of MoSe_(2) and high-performance light-emitting devices.展开更多
The zero-dimensional perovskite composite Cs_(4)PbBr_(6)/CsPbBr_(3) has attracted significant attention for its remarkable photoluminescence(PL),which remains highly effective even in solid state.This work presents a ...The zero-dimensional perovskite composite Cs_(4)PbBr_(6)/CsPbBr_(3) has attracted significant attention for its remarkable photoluminescence(PL),which remains highly effective even in solid state.This work presents a detailed analysis of the steady-state and time-resolved PL(TRPL)behavior of millimeter-scale Cs_(4)PbBr_(6)/CsPbBr_(3) crystals over a temperature range of 80 to 360 K,which covers exciton binding en-ergy,phonon energy,and PL peak energy shifting with increasing temperature.According to the results,Cs_(4)PbBr_(6)/CsPbBr_(3) exhibits high exciton binding energy and phonon energy,with calculated values of 358.7 and 94.8 meV,respectively.Specifically,when the temperature is below~235 K,thermal expan-sion dominates to influence the TRPL and peak energy,whereas electron-phonon interaction becomes the dominant factor as temperature rises from 235 to 325 K.It is found that Cs_(4)PbBr_(6)/CsPbBr_(3) has a PL behavior similar to CsPbBr_(3),and characterization and TRPL results demonstrate that nanometer-scale CsPbBr_(3) crystals embed in the Cs_(4)PbBr_(6) bulk matrix.Meanwhile,a white light-emitting diode(WLED)device based on Cs_(4)PbBr_(6)/CsPbBr_(3) with luminous efficiency of 64.56 Im/W is fabricated,and its color coordinate is measured as(0.34,0.31)under 20 mA,which is in close proximity to the standard white color coordinate.Moreover,the color gamut of the device is measured as 128.66%of the National Televi-sion Systems Committee(NTSC).The WLED electroluminescence(EL)spectra show high Correlated Color Temperature(CCT)stability for the working current varying from 5 to 100 mA,and after continuous oper-ation for 12 h,the EL intensity decreases and stabilizes at~70%of the initial EL intensity.These findings suggest that Cs_(4)PbBr_(6)/CsPbBr_(3) crystals are a promising candidate for WLEDs.展开更多
Single-emitter white organic light-emitting diode(WOLED) based on small organic molecule exhibits great potential in simplifying fabrication process of WOLEDs. However, the design and synthesis of molecule for highly ...Single-emitter white organic light-emitting diode(WOLED) based on small organic molecule exhibits great potential in simplifying fabrication process of WOLEDs. However, the design and synthesis of molecule for highly efficient single-emitter WOLED still remains a challenge. Herein, two asymmetric donor-acceptor-acceptor'(D-A-A') type molecule(PTZ-PQ-F and PTZ-PQ-CF3) are developed by employing trifluoromethyl(CF_(3)) or fluorine atom as secondary acceptor, which can exhibit white lighting with dual emission bands consisting of blue traditional fluorescence from quasi-axial(ax) conformer and orange thermally activated delayed fluorescence(TADF) from quasi-equatorial(eq) conformer. The introduction of CF_(3) into PTZ-PQ-CF3 greatly enhanced the photoluminescence quantum yield(PLQY) by suppressing the nonradiative deactivation. Owing to electron-inductive-effect of CF3, the “eq” conformer of PTZ-PQCF3 exhibits a much smaller ΔESTof 0.01 e V to realize more efficient reverse intersystem crossing(RISC)process, and then enhance the exciton utilization(nearly 100%) of the whole dual emission system. Consequently, single-emitter WOLEDs based on PTZ-PQ-CF3 show nearly standard white emission with EQE of 13.0% and CIE of(0.35, 0.36) in m CP host and show warm white emission with high EQE of 25.5%and CIE of(0.40, 0.47) in 35 Dcz PPy host, which are the best performance among reported single-emitter WOLEDs.展开更多
Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS reco...Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4.展开更多
As one of the promising next-generation light conversion materials,indium phosphide quantum dots(InP QDs)deserve much attention due to their great optical performances and environmentally friendly properties in partic...As one of the promising next-generation light conversion materials,indium phosphide quantum dots(InP QDs)deserve much attention due to their great optical performances and environmentally friendly properties in particular.Herein,InP-based QDs are embedded into mesoporous SBA-15 and solid QDs/SBA-15 composites are prepared,which exhibit 1.5 times higher photoluminescence quantum yield(PLQY)and narrower full width of half maximum(FWHM)than traditional QDs powder thanks to the reduction of light reabsorption and the optical waveguide effect of mesoporous structure.These advantages contribute to the performance enhancement of light-emitting diodes(LEDs).The luminous efficacy of the LED with green QDs/SBA-15 is 99.49 lm/W,which is higher than that of QDs powder(66.14 lm/W).In addition,the white LED fabricated with green and red InP-based QDs/SBA-15 shows luminous efficacy of 61.38 lm/W.More importantly,the luminous efficacy of the white LED is improved to 129.62 lm/W when using the K_(2)SiF_(6):Mn^(4+)instead of red InP-based QDs/SBA-15,because the K_(2)SiF_(6):Mn^(4+)does not absorb the emission from green InP-based QDs/SBA-15.This value is higher than those white LEDs with InP-based QDs reported previously.It is believed that this study demonstrates the promising potential of InP-based QDs for optoelectronic applications.展开更多
A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and c...A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and carrier mobility of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure anode/HTL/EML/cathode are numerically investigated.It is found that,for given values of the total thickness of organic layers,reduced depth of trap,total density of trap,and carrier mobility of HTL as well as EML,there exists an optimal thickness ratio of HTL to EML,by which a maximal quantum efficiency can be achieved.Through optimization of the thickness ratio,an enhancement of current density and quantum efficiency of as much as two orders of magnitude can be obtained.The dependences of the optimal thickness ratio to the characteristic trap energy,total density of trap and carrier mobility are numerically analyzed.展开更多
To investigate effective means of improving the efficiency of organic light-emitting devices (OLEDs) by making full use of ,triplet emission, a phosphorescent material Pt (II) Octaethylporphine (PtOEP) is doped ...To investigate effective means of improving the efficiency of organic light-emitting devices (OLEDs) by making full use of ,triplet emission, a phosphorescent material Pt (II) Octaethylporphine (PtOEP) is doped into polymer host polyspirobifluorene (Spiro) to allow radiative recombination of triplet excitons. The current and brightness characteristics of the devices are tested and the electroluminescent spectra are described. Both fluorescence and phosphorescence are ob- served,and an obvious increase in external quantum efficiency is realized compared to undoped devices when different phosphorescent dopant concentrations are tried. Thus,the phosphorescent emission from triplet excited states might be an effective way to increase the efficiency of OLEDs when the concentration of the phosphorescent dopant is properiy controlled.展开更多
Several series of fluorene-based light-emitting polymers with the emphasis on achieving efficient and stable bluelight emission are reported. Spiro-functionalization may narrow the emission spectra (with smaller tail ...Several series of fluorene-based light-emitting polymers with the emphasis on achieving efficient and stable bluelight emission are reported. Spiro-functionalization may narrow the emission spectra (with smaller tail at Ionger wavelengths)of fluorene homopolymers to provide purer blue emission. The thermal spectral stability of the polymers could also beimproved because of the elevation of the glass transition temperature caused by the spiro-functionalization. However, theexcimer emission in fluorene homopolymers is not suppressed by the spiro-functionalization. Alternate copolymers of 9,9-dihexylfluorene and substituted phenylenes may emit efficient blue ligh both in solution and in film. The optical propertiesare dependent on the substituion on the phenylene ring. The alkoxy-substituted polymers displayed efficient PL and EL andgood thermal spectral stability. The HOMO and LUMO energy levels of the polymers based on the backbone structure couldbe tuned in a wide range by attaching different functional groups on the phenylene ring. By attaching europium(III) complexat the ends of the side chains in the alternate copolymers, we have demonstrated a new approach to achieving red emissionwith a very narrow spectrum. The copolymers of 9,9-dihexylfluorene and thiophene and bithiophene with differentsubstitutions were also synthesized to study the effect of substitution and regioregularity on the optical and other physicalproperties of the polymers.展开更多
文摘Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.
基金support from the National Key Research and Development Program of China(2024YFA1207700)National Natural Science Foundation of China(52072141,52102170).
文摘The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.
基金supported by the Research Projects of Department of Education of Guangdong Province-024CJPT002Special Project of Guangdong Provincial Department of Education in Key Areas (No. 6021210075K)Shenzhen Polytechnic University Research Fund. (No. 6024310006K)
文摘Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancements have been made in the performance of cadmium-free QLEDs.However,several challenges persist in the industrialization of ecofriendly QLED displays.For instance,(1)the poor performance,characterized by low photoluminescence quantum yield(PLQY),unstable ligand,and charge imbalance,cannot be effectively addressed with a solitary strategy;(2)the degradation mechanism,involving emission quenching,morphological inhomogeneity,and field-enhanced electron delocalization remains unclear;(3)the lack of techniques for color patterning,such as optical lithography and transfer printing.Herein,we undertake a specific review of all technological breakthroughs that endeavor to tackle the above challenges associated with cadmium-free QLED displays.We begin by reviewing the evolution,architecture,and operational characteristics of eco-friendly QLEDs,highlighting the photoelectric properties of QDs,carrier transport layer stability,and device lifetime.Subsequently,we focus our attention not only on the latest insights into device degradation mechanisms,particularly,but also on the remarkable technological progress in color patterning techniques.To conclude,we provide a synthesis of the promising prospects,current challenges,potential solutions,and emerging research trends for QLED displays.
基金supported by the National Natural Science Foundation of China[Grant Nos.52375414(L.K.)and 82372121(M.H.)]the Shanghai Science&Technology Committee Innovation Grant[Grant No.23ZR1404200(L.K.)]the Yiwu Research Institute of Fudan University(L.K.),and the Shanghai Rising-Star Program[Grant No.23QA1409500 H.)].
文摘Chronic diabetic wounds,a common and severe complication of diabetes,are characterized by their inability to heal due to impaired blood and oxygen supply.In addition to glycemic control,various clinical treatments such as wound dressings,hyperbaric oxygen therapy,and phototherapy have been employed to manage these wounds.Low-level light therapy has emerged as an effective,noninvasive,and painless therapeutic approach for wound management.However,the bulkiness of traditional light sources and the need for frequent clinic visits have limited its widespread adoption.We have developed a wearable,flexible light-emitting bandage with cyanobacterial impregnation(LEB@Cyan).The bioactive bandage is designed to provide sustained oxygen generation and robust photobiomodulation,promoting keratinocyte migration,fibroblast proliferation,and angiogenesis.This addresses the hypoxic conditions and enhances bioenergetic supply to accelerate the healing process of diabetic wounds.In detail,the wound area of diabetic rats treated with LEB@Cyan showed significant reductions of 74.76%and 96.32%compared with that of LEB-treated diabetic rats and untreated diabetic rats,respectively.Such self-oxygenated wearable light-emitting fabric holds great promise for future clinical and commercial applications,potentially revolutionizing the management of chronic diabetic wounds.
基金supported by the National Natural Science Foundation of China(No.51973020)Beijing Natural Science Foundation(No.2232052)。
文摘A binary-mixed electron transport layer(ETL)has been reported for constructing solution-processable near-infrared organic light-emitting diodes(NIR OLEDs).Relative to the single-component ETL,the binarymixed ETL composed of PDINN:TPBi can enhance the carrier transport capacity,reduce device impedance,and weaken fiuorescence quenching of the emitting layer.By carefully selecting an appropriate luminescent material Y5(a nonfullerene electron acceptor in organic solar cells)and precisely fine-tuning the molecular aggregation in active layer using a mixed solvent,the morphology is optimized and luminescence performance is enhanced,resulting in efficient NIR OLEDs with an emission peak at 890 nm.The experiment showcases a Y5-based near-infrared OLED with a maximum radiance of 34.9 W sr^(-1)m^(-2)and a maximum external quantum efficiency of 0.50%,which is among the highest values reported for nondoped fiuorescent NIR OLEDs with an emission peak over 850 nm.
基金financial support of National Key Research and Development Program of China(No.2021YFA1501500)the National Natural Science Foundation of China(Nos.22033008,22220102005,22171265)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZZ103).
文摘The growing environmental concerns regarding rare earth elements in fluorescent powders,along with high production costs,have increased the demand for sustainable alternatives.We propose a promising solution using luminescent metal-organic frameworks(LMOFs)with large surface areas and tunable pore structures,combined with organic carbon quantum dots(CQDs).This study develops a novel white lightemitting diode(WLED)fluorescent powder by incorporating yellow-fluorescent quantum dots(CQDs-Y)into blue-emitting LMOF(ZJU-28),forming the composite material CQDs-Y-n@ZJU-28.The composite exhibits excellent thermal and chemical stability,long-term storage performance,and emits warm white light(CIE:0.3277,0.3281)when subjected to excitation at 365 nm,along with an external quantum efficiency(EQE)of 8.85%.Furthermore,it exhibits tunable emission characteristics and promising LED performance,showcasing a color rendering index(CRI)of 78 and a correlated color temperature of 3384 K.The emitted light undergoes minimal deviation in color towards the white end of the spectrum in the temperature range of 277-437 K,making it an ideal candidate for advanced WLED applications.
基金supported by the National Natural Science Foundation of China (Nos. 62222503, 52073040 and 52130304)the Sichuan Science and Technology Program (Nos. 2024NSFSC0012,2023NSFSC1973 and 2024NSFSC1446)+2 种基金the China Postdoctoral Science Foundation (Nos. 2023M740504 and GZC20230380)the Sichuan Provincial Human Resources and Social Security Department Programthe Collaborative Innovation Center of Suzhou Nano Science&Technology
文摘Triphenylamine(TPA)is the most promising donor fragment for the construction of long-wavelength thermally activated delayed fluorescence(TADF)emitters owing to its suitable dihedral angle that could enhance radiative decay to compete with the serious non-radiative decay.However,the moderate electron-donating capacity of TPA seriously limits the selection of acceptor for constructing longwavelength TADF emitters with narrow bandgaps.To address this issue,in this work,the peripheral benzene of TPA was replaced with 1,4-benzodioxane and anisole to obtain two new electrondonating units N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-N-phenyl-2,3-dihydrobenzo[b][1,4]dioxin-6-amine(TPADBO,−5.02 eV)and 4-methoxy-N-(4-methoxyphenyl)-N-phenylaniline(TPAMO,−5.00 eV),which possess much shallower highest occupied molecule orbital(HOMO)energy levels than the prototype TPA(−5.33 eV).Based on TPA and the modified TPA donor fragments,three TADF emitters were designed and synthesized,namely Py-TPA,Py-TPADBO and Py-TPAMO,with the same acceptor fragment 12-(2,6-diisopropylphenyl)pyrido[2′,3′:5,6]pyrazino[2,3-f][1,10]phenanthroline(Py).Among them,Py-TPAMO exhibits the highest photoluminescence quantum yield of 78.4%and the smallest singlet-triplet energy gap,which is because the introduction of anisole does not cause significant molecule deformation for the excited Py-TPAMO.And Py-TPAMO-based OLEDs successfully realize a maximum external quantum efficiency of 25.5%with the emission peak at 605 nm.This work provides a series of candidate of donor fragments for the development of efficient long-wavelength TADF emitters.
基金supported by the National Key Research and Development Program of China(2024YFE0103600)the National Natural Science Foundation of China(NSFC)(62474119,62205230,and 62175171)Suzhou Key Laboratory of Functional Nano&Soft Materials,Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project,Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.
文摘Colloidal quantum dots(CQDs)are highly regarded for their outstanding photovoltaic characteristics,including excellent color purity,stability,high photoluminescence quantum yield(PLQY),narrow emission spectra,and ease of solution processing.Despite significant progress in quantum dot light-emitting diodes(QLEDs)technology since its inception in 1994,blue QLEDs still fall short in efficiency and lifespan compared to red and green versions.The toxicity concerns associated with Cd/Pb-based quantum dots(QDs)have spurred the development of heavy-metal-free alternatives,such as groupⅡ−Ⅵ(e.g.,ZnSe-based QDs),groupⅢ−Ⅴ(e.g.,InP,GaN QDs),and carbon dots(CDs).In this review,we discuss the key properties and development history of quantum dots(QDs),various synthesis approaches,the role of surface ligands,and important considerations in developing core/shell(C/S)structured QDs.Additionally,we provide an outlook on the challenges and future directions for blue QLEDs.
基金This work was financially supported by the Department of Science and Technology of Sichuan Province(No.2020YJ0157).
文摘A red-emitting phosphor Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) with partial Al^(3+)/P^(5+) substitution on Si^(4+) was synthesized via a simple solid-state method,and the effects of the introduction of the M^(3+/5+)(M=Al,P)ions on the crystal structure and photoluminescence performance of Ca_(2.91)Si_(2−x)M_(x)O_(7):0.09Eu^(3+) phosphors were investigated.The X-ray diffraction(XRD),energy-dispersive X-ray spectroscopy(EDS),and X-ray photoelectron spectroscopy(XPS)results revealed that the structure of Ca_(3)Si_(2)O_(7) remained the same after the introduction of Al^(3+) and P^(5+) ions.The characteristic emission of Eu^(3+)-doped Ca_(3)Si_(2−x)M_(x)O_(7) phosphors exhibited two main peaks at 617 nm(red)and 593 nm(orange)under excitation at 394 nm,which originated from the^(5)D_(0)→^(7)F_(2)and^(5)D_(0)→^(7)F_(1) electron transitions of Eu^(3+) ions.After the partial substitution of Al^(3+) and P^(5+),the red emission intensities of the Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) phosphors were significantly enhanced by 1.88-and 1.42-fold,respectively,which is attributed to the crystal-field effect around Eu^(3+).Meanwhile,the luminescence intensities of the Ca_(2.91)Si_(1.96)Al_(0.04)O_(7):0.09Eu^(3+) and Ca_(2.91)Si_(1.94)P_(0.06)O_(7):0.09Eu^(3+) phosphors at 210℃ were 79.36%and 77.53%of those at 30°C,respectively,indicating their excellent thermal stability.Moreover,the as-prepared Ca_(2.91)Si_(1.96)Al_(0.04)O_(7):0.09Eu^(3+)and Ca_(2.91)Si_(1.94)P_(0.06)O_(7):0.09Eu^(3+) red-emitting phosphors were combined with a near-ultraviolet chip of 395 nm to fabricate red-light-emitting diode(LED)and white(w)-LED devices with excellent chromaticity features.In summary,Al^(3+)/P^(5+)-substituted Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) can serve as red-emitting phosphors for applications in w-LEDs.
基金supported by the Science and Technology Program of Shenzhen(Grant Nos.SGDX20201103095607022 and JCYJ20210324095003011)supported by the Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province.
文摘The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical properties of metal halide perovskites,such as tunable bandgap,narrow emission linewidth,high photoluminescence quantum yield,and particularly,the soft nature of lattice.At present,substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency(EQE)of 24.5%.Herein,we summarize the recent progress in FPeLEDs,focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance.In addition,we present relevant applications of FPeLEDs in displays and beyond.Finally,perspective toward the future development and applications of flexible PeLEDs are also discussed.
基金supported by the Science and Technology Development Fund,Macao SAR(File no.FDCT-0082/2021/A2,0010/2022/AMJ,006/2022/ALC)UM's research fund(File no.MYRG2022-00241-IAPME,MYRGCRG2022-00009-FHS)+2 种基金the research fund from Wuyi University(EF38/IAPME-XGC/2022/WYU)the Natural Science Foundation of China(61935017,62175268)Science,Technology and Innovation Commission of Shenzhen Municipality(Project Nos.JCYJ20220530113015035,JCYJ20210324120204011,and KQTD2015071710313656).
文摘Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.
基金funded by the China Agriculture Research System(CARS-15-16).
文摘Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage.
基金This work is supported by the National Natural Science Foundation of China(No.61904151)the National Key Research and Development Program of China(No.2021YFA1200803)the Joint Research Funds of the Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-020).
文摘Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillator strengths,thus pro-viding an intriguing platform for optoelectronic applications of light-emitting diodes(LEDs),field-effect transistors(FETs),sin-gle-photon emitters(SPEs),and coherent light sources(CLSs).Moreover,these MoSe_(2) layers can realize strong excitonic emis-sion in the near-infrared wavelengths,which can be combined with the silicon-based integration technologies and further encourage the development of the new generation technologies of on-chip optical interconnection,quantum computing,and quantum information processing.Herein,we overview the state-of-the-art applications of light-emitting devices based on two-dimensional MoSe_(2) layers.Firstly,we introduce recent developments in excitonic emission features from atomically thin MoSe_(2) and their dependences on typical physical fields.Next,we focus on the exciton-polaritons and plasmon-exciton polaritons in MoSe_(2) coupled to the diverse forms of optical microcavities.Then,we highlight the promising applications of LEDs,SPEs,and CLSs based on MoSe_(2) and their heterostructures.Finally,we summarize the challenges and opportunities for high-quality emis-sion of MoSe_(2) and high-performance light-emitting devices.
基金Heilongjiang Provincial Key Laboratory of Micro-nano Sensitive Devices and Systems(Heilongjiang)and Cultivation project of double first-class initiative discipline by Heilongjiang Province(No.LJGXCG2022–061)M.C.acknowledges support from the European Research Council(ERC)under the European Union's Horizon 2020 research and innovation program"NANOLED ERC-2019-STG Grant agreement No.851794".
文摘The zero-dimensional perovskite composite Cs_(4)PbBr_(6)/CsPbBr_(3) has attracted significant attention for its remarkable photoluminescence(PL),which remains highly effective even in solid state.This work presents a detailed analysis of the steady-state and time-resolved PL(TRPL)behavior of millimeter-scale Cs_(4)PbBr_(6)/CsPbBr_(3) crystals over a temperature range of 80 to 360 K,which covers exciton binding en-ergy,phonon energy,and PL peak energy shifting with increasing temperature.According to the results,Cs_(4)PbBr_(6)/CsPbBr_(3) exhibits high exciton binding energy and phonon energy,with calculated values of 358.7 and 94.8 meV,respectively.Specifically,when the temperature is below~235 K,thermal expan-sion dominates to influence the TRPL and peak energy,whereas electron-phonon interaction becomes the dominant factor as temperature rises from 235 to 325 K.It is found that Cs_(4)PbBr_(6)/CsPbBr_(3) has a PL behavior similar to CsPbBr_(3),and characterization and TRPL results demonstrate that nanometer-scale CsPbBr_(3) crystals embed in the Cs_(4)PbBr_(6) bulk matrix.Meanwhile,a white light-emitting diode(WLED)device based on Cs_(4)PbBr_(6)/CsPbBr_(3) with luminous efficiency of 64.56 Im/W is fabricated,and its color coordinate is measured as(0.34,0.31)under 20 mA,which is in close proximity to the standard white color coordinate.Moreover,the color gamut of the device is measured as 128.66%of the National Televi-sion Systems Committee(NTSC).The WLED electroluminescence(EL)spectra show high Correlated Color Temperature(CCT)stability for the working current varying from 5 to 100 mA,and after continuous oper-ation for 12 h,the EL intensity decreases and stabilizes at~70%of the initial EL intensity.These findings suggest that Cs_(4)PbBr_(6)/CsPbBr_(3) crystals are a promising candidate for WLEDs.
基金the supports by the National Natural Science Foundation of China (No.22175049)the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education,Jianghan University (No.JDGD-202213)the support of the Fundamental Research Funds for the Central Universities (Harbin Institute of Technology)。
文摘Single-emitter white organic light-emitting diode(WOLED) based on small organic molecule exhibits great potential in simplifying fabrication process of WOLEDs. However, the design and synthesis of molecule for highly efficient single-emitter WOLED still remains a challenge. Herein, two asymmetric donor-acceptor-acceptor'(D-A-A') type molecule(PTZ-PQ-F and PTZ-PQ-CF3) are developed by employing trifluoromethyl(CF_(3)) or fluorine atom as secondary acceptor, which can exhibit white lighting with dual emission bands consisting of blue traditional fluorescence from quasi-axial(ax) conformer and orange thermally activated delayed fluorescence(TADF) from quasi-equatorial(eq) conformer. The introduction of CF_(3) into PTZ-PQ-CF3 greatly enhanced the photoluminescence quantum yield(PLQY) by suppressing the nonradiative deactivation. Owing to electron-inductive-effect of CF3, the “eq” conformer of PTZ-PQCF3 exhibits a much smaller ΔESTof 0.01 e V to realize more efficient reverse intersystem crossing(RISC)process, and then enhance the exciton utilization(nearly 100%) of the whole dual emission system. Consequently, single-emitter WOLEDs based on PTZ-PQ-CF3 show nearly standard white emission with EQE of 13.0% and CIE of(0.35, 0.36) in m CP host and show warm white emission with high EQE of 25.5%and CIE of(0.40, 0.47) in 35 Dcz PPy host, which are the best performance among reported single-emitter WOLEDs.
基金conducted within the state assignment of the Ministry of Science and Higher Education for universities(Project No.FZRR-2023-0009).
文摘Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4.
基金supported by the National Natural Science Foundation of China(Nos.62074044 and 62004231)the Zhongshan-Fudan Joint Innovation Center,and Jihua Laboratory Projects of Guangdong Province(No.X190111UZ190).
文摘As one of the promising next-generation light conversion materials,indium phosphide quantum dots(InP QDs)deserve much attention due to their great optical performances and environmentally friendly properties in particular.Herein,InP-based QDs are embedded into mesoporous SBA-15 and solid QDs/SBA-15 composites are prepared,which exhibit 1.5 times higher photoluminescence quantum yield(PLQY)and narrower full width of half maximum(FWHM)than traditional QDs powder thanks to the reduction of light reabsorption and the optical waveguide effect of mesoporous structure.These advantages contribute to the performance enhancement of light-emitting diodes(LEDs).The luminous efficacy of the LED with green QDs/SBA-15 is 99.49 lm/W,which is higher than that of QDs powder(66.14 lm/W).In addition,the white LED fabricated with green and red InP-based QDs/SBA-15 shows luminous efficacy of 61.38 lm/W.More importantly,the luminous efficacy of the white LED is improved to 129.62 lm/W when using the K_(2)SiF_(6):Mn^(4+)instead of red InP-based QDs/SBA-15,because the K_(2)SiF_(6):Mn^(4+)does not absorb the emission from green InP-based QDs/SBA-15.This value is higher than those white LEDs with InP-based QDs reported previously.It is believed that this study demonstrates the promising potential of InP-based QDs for optoelectronic applications.
文摘A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and carrier mobility of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure anode/HTL/EML/cathode are numerically investigated.It is found that,for given values of the total thickness of organic layers,reduced depth of trap,total density of trap,and carrier mobility of HTL as well as EML,there exists an optimal thickness ratio of HTL to EML,by which a maximal quantum efficiency can be achieved.Through optimization of the thickness ratio,an enhancement of current density and quantum efficiency of as much as two orders of magnitude can be obtained.The dependences of the optimal thickness ratio to the characteristic trap energy,total density of trap and carrier mobility are numerically analyzed.
文摘To investigate effective means of improving the efficiency of organic light-emitting devices (OLEDs) by making full use of ,triplet emission, a phosphorescent material Pt (II) Octaethylporphine (PtOEP) is doped into polymer host polyspirobifluorene (Spiro) to allow radiative recombination of triplet excitons. The current and brightness characteristics of the devices are tested and the electroluminescent spectra are described. Both fluorescence and phosphorescence are ob- served,and an obvious increase in external quantum efficiency is realized compared to undoped devices when different phosphorescent dopant concentrations are tried. Thus,the phosphorescent emission from triplet excited states might be an effective way to increase the efficiency of OLEDs when the concentration of the phosphorescent dopant is properiy controlled.
文摘Several series of fluorene-based light-emitting polymers with the emphasis on achieving efficient and stable bluelight emission are reported. Spiro-functionalization may narrow the emission spectra (with smaller tail at Ionger wavelengths)of fluorene homopolymers to provide purer blue emission. The thermal spectral stability of the polymers could also beimproved because of the elevation of the glass transition temperature caused by the spiro-functionalization. However, theexcimer emission in fluorene homopolymers is not suppressed by the spiro-functionalization. Alternate copolymers of 9,9-dihexylfluorene and substituted phenylenes may emit efficient blue ligh both in solution and in film. The optical propertiesare dependent on the substituion on the phenylene ring. The alkoxy-substituted polymers displayed efficient PL and EL andgood thermal spectral stability. The HOMO and LUMO energy levels of the polymers based on the backbone structure couldbe tuned in a wide range by attaching different functional groups on the phenylene ring. By attaching europium(III) complexat the ends of the side chains in the alternate copolymers, we have demonstrated a new approach to achieving red emissionwith a very narrow spectrum. The copolymers of 9,9-dihexylfluorene and thiophene and bithiophene with differentsubstitutions were also synthesized to study the effect of substitution and regioregularity on the optical and other physicalproperties of the polymers.