Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effectiv...Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effective defense planning and interception strategies.In recent years,HGV trajectory prediction methods based on deep learning have the great potential to significantly enhance prediction accuracy and efficiency.However,it's still challenging to strike a balance between improving prediction performance and reducing computation costs of the deep learning trajectory prediction models.To solve this problem,we propose a new deep learning framework(FECA-LSMN)for efficient HGV trajectory prediction.The model first uses a Frequency Enhanced Channel Attention(FECA)module to facilitate the fusion of different HGV trajectory features,and then subsequently employs a Light Sampling-oriented Multi-Layer Perceptron Network(LSMN)based on simple MLP-based structures to extract long/shortterm HGV trajectory features for accurate trajectory prediction.Also,we employ a new data normalization method called reversible instance normalization(RevIN)to enhance the prediction accuracy and training stability of the network.Compared to other popular trajectory prediction models based on LSTM,GRU and Transformer,our FECA-LSMN model achieves leading or comparable performance in terms of RMSE,MAE and MAPE metrics while demonstrating notably faster computation time.The ablation experiments show that the incorporation of the FECA module significantly improves the prediction performance of the network.The RevIN data normalization technique outperforms traditional min-max normalization as well.展开更多
AIM:To investigate the effects of different light intensities and various mydriatic and miotic drugs on pupil accommodation in guinea pigs.METHODS:Forty-two-week-old guinea pigs were randomly divided into four groups ...AIM:To investigate the effects of different light intensities and various mydriatic and miotic drugs on pupil accommodation in guinea pigs.METHODS:Forty-two-week-old guinea pigs were randomly divided into four groups to assess pupillary responses under varying light intensities(100,250,500 lx)and pharmacological interventions(1%atropine,1%cyclopentolate,1%tropicamide,or 2%pilocarpine).Baseline pupil size and eccentricity were recorded using a non-contact Python-based imaging system integrating edge detection and pixel-to-distance conversion.Direct illumination effects were measured at sequential time points,followed by drug administration and longitudinal tracking of pupillary changes.The protocol was repeated at 12wk of age for developmental comparisons.Postexperiment,enucleated eyes were analyzed to evaluate in vitro vs in vivo differences.RESULTS:Significant age-dependent differences in pupil dynamics were observed.Both 2-and 12-week-old guinea pigs exhibited marked pupil constriction under direct illumination(P<0.001),with decreased eccentricity post-constriction(P<0.001).Indirect illumination caused inconsistent pupil size changes(2-week:P=0.68;12-week:P=0.49).Pharmacologically,atropine,cyclopentolate,and tropicamide induced pupil dilation(P<0.001),whereas pilocarpine caused constriction(P<0.001).All drug groups showed reduced eccentricity(P<0.001).In vivo/in vitro comparisons revealed significant structural differences.CONCLUSION:This study investigates pupillary responses in developing guinea pigs,revealing a direct pupillary light reflex(PLR)with light intensity-dependent responses,while indirect PLR was undetectable.The differential effects of muscarinic modulators on pupillary responses underscore the critical role of cholinergic signaling in ocular accommodation,with age-related variations in sensitivity.Additionally,a novel non-contact measurement methodology achieved a precision of 0.01 mm for pupillary quantification,enhancing accuracy in ocular studies.展开更多
A pulse frequency modulation(PFM) circuit for retinal prosthesis,which generates electrical pulses with frequency proportional to the intensity of incident light, is presented. The fundamental characteristic of the ...A pulse frequency modulation(PFM) circuit for retinal prosthesis,which generates electrical pulses with frequency proportional to the intensity of incident light, is presented. The fundamental characteristic of the circuit is described and analyzed. The circuit is realized in 0.6μm CMOS process,and the simulation results testify to the possibility of sub-retinal implantation.展开更多
An analytic equation interpreting the intensity of ultrasound-modulated scattering light is derived, based on diffusion theory and previous explanations of the intensity modulation mechanism. Furthermore, an experimen...An analytic equation interpreting the intensity of ultrasound-modulated scattering light is derived, based on diffusion theory and previous explanations of the intensity modulation mechanism. Furthermore, an experiment of ultrasonic modulation of incoherent light in a scattering medium is developed. This analytical model agrees well with experimental results,which confirms the validity of the proposed intensity modulation mechanism. The model supplements the existing research on the ultrasonic modulation mechanism of scattering light.展开更多
We introduce a new method of simultaneously implementing frequency stabilization and frequency shift for semiconductor lasers. We name this method the frequency tunable modulation transfer spectroscopy (FTMTS). To r...We introduce a new method of simultaneously implementing frequency stabilization and frequency shift for semiconductor lasers. We name this method the frequency tunable modulation transfer spectroscopy (FTMTS). To realize a stable output of 780 nm semiconductor laser, an FTMTS optical heterodyne frequency stabilization system is constructed. Before entering into the frequency stabilization system, the probe laser passes through an acousto-optical modulator (AOM) twice in advance to achieve tunable frequency while keeping the light path stable. According to the experimental results, the frequency changes from 120 MHz to 190 MHz after the double-pass AOM, and the intensity of laser entering into the system is greatly changed, but there is almost no change in the error signal of the FTMTS spectrum. Using this signal to lock the laser frequency, we can ensure that the frequency of the laser changes with the amount of AOM shift. Therefore, the magneto-optical trap (MOT)-molasses process can be implemented smoothly.展开更多
To overcome hole-injection limitation of p^+-n emitter junction in 4H-SiC light triggered thyristor, a novel high- voltage 4H-SiC light triggered thyristor with double-deck thin n-base structure is proposed and demon...To overcome hole-injection limitation of p^+-n emitter junction in 4H-SiC light triggered thyristor, a novel high- voltage 4H-SiC light triggered thyristor with double-deck thin n-base structure is proposed and demonstrated by two- dimensional numerical simulations. In this new structure, the conventional thin n-base is split to double-deck. The hole- injection of p^+-n emitter junction is modulated by modulating the doping concentration and thickness of upper-deck thin n- base. With double-deck thin n-base, the current gain coefficient of the top pnp transistor in 4H-SiC light triggered thyristor is enhanced. As a result, the triggering light intensity and the turn-on delay time of 4H-SiC light triggered thyristor are both reduced. The simulation results show that the proposed 10-kV 4H-SiC light triggered thyristor is able to be triggered on by 500-mW/cm^2 ultraviolet light pulse. Meanwhile, the turn-on delay time of the proposed thyristor is reduced to 337 ns.展开更多
The modulation transfer spectroscopy in an ytterbium hollow cathode lamp at 399 nm is measured. The error signal for frequency locking is optimized by measuring the dependences of its slope, linewidth and magnitude on...The modulation transfer spectroscopy in an ytterbium hollow cathode lamp at 399 nm is measured. The error signal for frequency locking is optimized by measuring the dependences of its slope, linewidth and magnitude on various parameters. Under the optimum condition, the laser frequency at 399 nm can be stabilized. The long-term stability of laser frequency is measured by monitoring the fluorescence signal of the ytterbium atomic beam induced by the locked laser. The laser frequency is shown to be tightly locked, and the stabilized laser is successfully applied to the cooling of ytterbium atoms.展开更多
Although envelope spectrum does not involve complicated sideband,thus has a much simpler structure than the common Fourier spectrum,it is still subject to the efect of planets passing or time variant vibration transfe...Although envelope spectrum does not involve complicated sideband,thus has a much simpler structure than the common Fourier spectrum,it is still subject to the efect of planets passing or time variant vibration transfer pams.The presence of planets passing frequency,sun gear rotating frequency,or planet carrier rotating frequency in the envelope spectrum may confuse the analysis in fault diagnosis.Therefore,it is important to look for an approach to remove the interferences caused by the efect of planets passing or time variant vibration transfer paths.展开更多
Based on the theory of the passive hydrogen maser, along with the technology of frequency modulation and modulation transfer spectroscopy, the theoretical expression of the single frequency modulation for the passive ...Based on the theory of the passive hydrogen maser, along with the technology of frequency modulation and modulation transfer spectroscopy, the theoretical expression of the single frequency modulation for the passive hydrogen maser and the function of the cavity and H line error signals separation are derived, which are basically coincident with the experiment. The absorption and dispersion spectrum curves with different resonance widths show that the cavity and hydrogen transition serve as discriminators, and the two error signals can be separated. Through the calculations of the two error signals in the passive hydrogen maser, it analyzes the traditional method of the two error signals separation, and then describes a new improved method for the passive hydrogen servo loops consisting in the use of a single modulation frequency and frequency discrimination. A null interaction of the two error signals for the new selection of the phase setting is deduced theoretically and validated by the simulation. The preliminary experimental result confirms the feasibility of this new approach, which can reduce the influence from the cavity frequency variety on the crystal oscillator and contribute significantly to the long term performance of the passive hydrogen maser.展开更多
In this study, a method for determining the intrinsic recombination velocity at the junction of a silicon solar cell is presented. The expression of intrinsic recombination velocity at the junction was established und...In this study, a method for determining the intrinsic recombination velocity at the junction of a silicon solar cell is presented. The expression of intrinsic recombination velocity at the junction was established under irradiation in frequency modulation. Based on this expression, an electrical model of the intrinsic recombination velocity at the junction is presented.展开更多
Epsilon-near-zero(ENZ)modes have attracted extensive interests due to its ultrasmall mode volume resulting in ex-tremely strong light-matter interaction(LMI)for active optoelectronic devices.The ENZ modes can be elect...Epsilon-near-zero(ENZ)modes have attracted extensive interests due to its ultrasmall mode volume resulting in ex-tremely strong light-matter interaction(LMI)for active optoelectronic devices.The ENZ modes can be electrically toggled between on and off states with a classic metal-insulator-semiconductor(MIS)configuration and therefore allow access to electro-absorption(E-A)modulation.Relying on the quantum confinement of charge-carriers in the doped semiconductor,the fundamental limitation of achieving high modulation efficiency with MIS junction is that only a nanometer-thin ENZ confinement layer can contribute to the strength of E-A.Further,for the ENZ based spatial light modulation,the require-ment of resonant coupling inevitably leads to small absolute modulation depth and limited spectral bandwidth as restric-ted by the properties of the plasmonic or high-Q resonance systems.In this paper,we proposed and demonstrated a dual-ENZ mode scheme for spatial light modulation with a TCOs/dielectric/silicon nanotrench configuration for the first time.Such a SIS junction can build up two distinct ENZ layers arising from the induced charge-carriers of opposite polar-ities adjacent to both faces of the dielectric layer.The non-resonant and low-loss deep nanotrench framework allows the free space light to be modulated efficiently via interaction of dual ENZ modes in an elongated manner.Our theoretical and experimental studies reveal that the dual ENZ mode scheme in the SIS configuration leverages the large modulation depth,extended spectral bandwidth together with high speed switching,thus holding great promise for achieving electric-ally addressed spatial light modulation in near-to mid-infrared regions.展开更多
We report construction of an iodine-stabilized laser frequency standard at 532 nm based on modulation transfer spectroscopy(MTS)technology with good reproducibility.A frequency stability of 2.5×10^(-14)at 1 s ave...We report construction of an iodine-stabilized laser frequency standard at 532 nm based on modulation transfer spectroscopy(MTS)technology with good reproducibility.A frequency stability of 2.5×10^(-14)at 1 s averaging time is achieved,and the frequency reproducibility has a relative uncertainty of 3.5×10^(-13),demonstrating the great stability of our setup.The systematic uncertainty of the iodine-stabilized laser frequency standard is evaluated,especially the contribution of the residual amplitude modulation(RAM).The contribution of the RAM in MTS cannot be evaluated directly.To solve this problem,we theoretically deduce the MTS signal with RAM under large modulation depth,and prove that the non-symmetric shape of the MTS signal is directly related to the MTS effect.The non-symmetric shape factor can be calibrated with a frequency comb,and in real experiments,this value can be obtained by least-squares fitting of the MTS signal,from which we can infer the RAMinduced frequency shift.The full frequency uncertainty is evaluated to be 5.3 kHz(corresponding to a relative frequency uncertainty of 9.4×10^(-12)).The corrected transition frequency has a difference from the BIPM-recommended value of 2 kHz,which is within 1σ uncertainty,proving the validity of our evaluation.展开更多
A new method of estimating the frequency-known signals from the strong background noise was presented first. Then the new method was used in the demodulation of the digital frequency modulation (FSK) signals. The new ...A new method of estimating the frequency-known signals from the strong background noise was presented first. Then the new method was used in the demodulation of the digital frequency modulation (FSK) signals. The new demodulation method can complete the demodulation of the FSK signals only with the carrier frequency and without any carrier phase information. The simulation results show that the performance of anti-noise of the new method is better than that of the incoherent demodulation method and the fluctuation of the carrier phase has little effect on the new method. So the new demodulation method has a fine prospect in the practical applications.展开更多
Switch mode power supply (SMPS) is good selection for power supplies of Unmanned Aerial Vehicle (UAV), which is one of the most important interference sources of UAV. The power switches with their high dv/dt and di/dt...Switch mode power supply (SMPS) is good selection for power supplies of Unmanned Aerial Vehicle (UAV), which is one of the most important interference sources of UAV. The power switches with their high dv/dt and di/dt switching slopes are the sources of electromagnetic interference (EMI). In this paper, a variable frequency modulation technology of the forward converter of UAV is presented, which is utilized in SMPS to improve electromagnetic compatibility (EMC). In variable-frequency techniques, power (signal) is transmitted in power converter in wide-band mode in several frequencies that are constantly changing, the EMI spectral performance of the SMPS can be controlled with the modulating pattern and modulation method. The validity of the models and analyses are confirmed experimentally by using a dc/dc forward converter.展开更多
In this paper,we design a spatial modulation based orthogonal time frequency space(SMOTFS)system to achieve improved transmission reliability and meet the high transmission rate and highspeed demands of future mobile ...In this paper,we design a spatial modulation based orthogonal time frequency space(SMOTFS)system to achieve improved transmission reliability and meet the high transmission rate and highspeed demands of future mobile communications,which fully utilizes the characteristics of spatial modulation(SM)and orthogonal time frequency space(OTFS)transmission.The detailed system design and signal processing of the SM-OTFS system have been presented.The closed-form expressions of the average symbol error rate(ASER)and average bit error rate(ABER)of the SM-OTFS system have been derived over the delay-Doppler channel with the help of the union bounding technique and moment-generating function(MGF).Meanwhile,the system complexity has been evaluated.Numerical results verify the correctness of the theoretical ASER and ABER analysis of the SM-OTFS system in the high signal-to-noise ratio(SNR)regions and also show that the SM-OTFS system outperforms the traditional SM based orthogonal frequency division multiplexing(SM-OFDM)system with limited complexity increase under mobile conditions,especially in high mobility scenarios.展开更多
Ultrahigh resolution synthetic aperture radar(SAR)imaging for ship targets is significant in SAR imaging,but it suffers from high frequency vibration of the platform,which will induce defocus into SAR imaging results....Ultrahigh resolution synthetic aperture radar(SAR)imaging for ship targets is significant in SAR imaging,but it suffers from high frequency vibration of the platform,which will induce defocus into SAR imaging results.In this paper,a novel compensation method based on the sinusoidal frequency modulation Fourier-Bessel transform(SFMFBT)is proposed,it can estimate the vibration errors,and the phase shift ambiguity can be avoided via extracting the time frequency ridge consequently.By constructing the corresponding compensation function and combined with the inverse SAR(ISAR)technique,well-focused imaging results can be obtained.The simulation imaging results of ship targets demonstrate the validity of the proposed approach.展开更多
A wideband dipole signal is required for dipole dispersion correction and nearborehole imaging. To obtain the broadband flexural wave dispersion, we use a nonlinear frequency modulation (NLFM) signal and propose a s...A wideband dipole signal is required for dipole dispersion correction and nearborehole imaging. To obtain the broadband flexural wave dispersion, we use a nonlinear frequency modulation (NLFM) signal and propose a segment linear frequency modulation (SLFM) signal as the dipole excitation signal to compensate for the excitation intensity. The signal-to-noise ratio (SNR) of the signal over the entire frequency band is increased. The finite-difference method is used to simulate the responses from a Ricker wavelet, a linear frequency modulation (LFM) signal, an NLFM signal, and an SLFM signal in two borehole models of a homogeneously hard formation and a radially stratified formation. The dispersion and radial tomography results at low SNR of the sound source signals are compared. Numerical modeling suggests that the energy of the flexural waves excited by the Ricker wavelet source is concentrated near the Airy phase. In this case, the dispersion is incomplete and information regarding the formation near or far from the borehole cannot be obtained. The LFM signal yields dispersion information near the Airy phase and the high-frequency range but not in the low-frequency range. Moreover, the information regarding the formation far from the borehole is not accurate. The NLFM signal extends the frequency range of the flexural waves by compensating for the excitation intensity and yields information regarding the formation information, but it is not easy to obtain. The SLFM signal yields the same results as the NLFM signal and is easier to implement. Consequently, the dipole detection range expands and the S-wave velocity calculation accuracy improves.展开更多
Modulation recognition becomes unreliable at low signal-to-noise ratio(SNR)over fading channel.A novel method is proposed to recognize the digital modulated signals with frequency and phase offsets over multi-path fad...Modulation recognition becomes unreliable at low signal-to-noise ratio(SNR)over fading channel.A novel method is proposed to recognize the digital modulated signals with frequency and phase offsets over multi-path fading channels in this paper.This method can overcome the effects of phase offset,Gaussian noise and multi-path fading.To achieve this,firstly,the characteristic parameters search is constructed based on the cyclostationarity of received signals,to overcome the phase offset,Gaussian white noise,and influence caused by multi-path fading.Then,the carrier frequency of the received signal is estimated,and the maximum characteristic parameter is searched around the integer multiple carriers and their vicinities.Finally,the modulation types of the received signal with frequency and phase offsets are classified using decision thresholds.Simulation results demonstrate that the performance of the proposed method is better than the traditional methods when SNR is over 5dB,and that the proposed method is robust to frequency and phase offsets over multipath channels.展开更多
This paper gives a spectrum expression which is simple and has a clear physical conception for pulse frequency modulation signal, and has been confirmed by an experiment simultaneously.
Phase modulation is a crucial step when the frequency-based wavefront optimization technique is exploited to measure the optical transmission matrix(TM) of a scattering medium. We report a simple but powerful method, ...Phase modulation is a crucial step when the frequency-based wavefront optimization technique is exploited to measure the optical transmission matrix(TM) of a scattering medium. We report a simple but powerful method, direct digital frequency synthesis(DDS) technology to modulate the phase front of the laser and measure the TM. By judiciously modulating the phase front of a He–Ne laser beam, we experimentally generate a high quality focus at any targeted location through a 2 mm thick 120 grit ground glass diffuser, which is commercially used in laser display and laser holographic display for improving brightness uniformity and reducing speckle. The signal to noise ratio(SNR) of the clear round focus is 50 and the size is about 44 μm. Our study will open up new avenues for enhancing light energy delivery to the optical engine in laser TV to lower the power consumption, phase compensation to reduce the speckle noise, and controlling the lasing threshold in random lasers.展开更多
文摘Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effective defense planning and interception strategies.In recent years,HGV trajectory prediction methods based on deep learning have the great potential to significantly enhance prediction accuracy and efficiency.However,it's still challenging to strike a balance between improving prediction performance and reducing computation costs of the deep learning trajectory prediction models.To solve this problem,we propose a new deep learning framework(FECA-LSMN)for efficient HGV trajectory prediction.The model first uses a Frequency Enhanced Channel Attention(FECA)module to facilitate the fusion of different HGV trajectory features,and then subsequently employs a Light Sampling-oriented Multi-Layer Perceptron Network(LSMN)based on simple MLP-based structures to extract long/shortterm HGV trajectory features for accurate trajectory prediction.Also,we employ a new data normalization method called reversible instance normalization(RevIN)to enhance the prediction accuracy and training stability of the network.Compared to other popular trajectory prediction models based on LSTM,GRU and Transformer,our FECA-LSMN model achieves leading or comparable performance in terms of RMSE,MAE and MAPE metrics while demonstrating notably faster computation time.The ablation experiments show that the incorporation of the FECA module significantly improves the prediction performance of the network.The RevIN data normalization technique outperforms traditional min-max normalization as well.
文摘AIM:To investigate the effects of different light intensities and various mydriatic and miotic drugs on pupil accommodation in guinea pigs.METHODS:Forty-two-week-old guinea pigs were randomly divided into four groups to assess pupillary responses under varying light intensities(100,250,500 lx)and pharmacological interventions(1%atropine,1%cyclopentolate,1%tropicamide,or 2%pilocarpine).Baseline pupil size and eccentricity were recorded using a non-contact Python-based imaging system integrating edge detection and pixel-to-distance conversion.Direct illumination effects were measured at sequential time points,followed by drug administration and longitudinal tracking of pupillary changes.The protocol was repeated at 12wk of age for developmental comparisons.Postexperiment,enucleated eyes were analyzed to evaluate in vitro vs in vivo differences.RESULTS:Significant age-dependent differences in pupil dynamics were observed.Both 2-and 12-week-old guinea pigs exhibited marked pupil constriction under direct illumination(P<0.001),with decreased eccentricity post-constriction(P<0.001).Indirect illumination caused inconsistent pupil size changes(2-week:P=0.68;12-week:P=0.49).Pharmacologically,atropine,cyclopentolate,and tropicamide induced pupil dilation(P<0.001),whereas pilocarpine caused constriction(P<0.001).All drug groups showed reduced eccentricity(P<0.001).In vivo/in vitro comparisons revealed significant structural differences.CONCLUSION:This study investigates pupillary responses in developing guinea pigs,revealing a direct pupillary light reflex(PLR)with light intensity-dependent responses,while indirect PLR was undetectable.The differential effects of muscarinic modulators on pupillary responses underscore the critical role of cholinergic signaling in ocular accommodation,with age-related variations in sensitivity.Additionally,a novel non-contact measurement methodology achieved a precision of 0.01 mm for pupillary quantification,enhancing accuracy in ocular studies.
文摘A pulse frequency modulation(PFM) circuit for retinal prosthesis,which generates electrical pulses with frequency proportional to the intensity of incident light, is presented. The fundamental characteristic of the circuit is described and analyzed. The circuit is realized in 0.6μm CMOS process,and the simulation results testify to the possibility of sub-retinal implantation.
基金Project supported by the National Natural Science Foundation of China(Grant No.61178089)the Key Program of Science and Technology of Fujian Province,China(Grant No.2011Y0019)the Educational Department of Fujian Province,China(Grant No.JA13074)
文摘An analytic equation interpreting the intensity of ultrasound-modulated scattering light is derived, based on diffusion theory and previous explanations of the intensity modulation mechanism. Furthermore, an experiment of ultrasonic modulation of incoherent light in a scattering medium is developed. This analytical model agrees well with experimental results,which confirms the validity of the proposed intensity modulation mechanism. The model supplements the existing research on the ultrasonic modulation mechanism of scattering light.
基金Project supported by the National Key Scientific Instrument and Equipment Development Project,China(Grant No.2014YQ35046103)
文摘We introduce a new method of simultaneously implementing frequency stabilization and frequency shift for semiconductor lasers. We name this method the frequency tunable modulation transfer spectroscopy (FTMTS). To realize a stable output of 780 nm semiconductor laser, an FTMTS optical heterodyne frequency stabilization system is constructed. Before entering into the frequency stabilization system, the probe laser passes through an acousto-optical modulator (AOM) twice in advance to achieve tunable frequency while keeping the light path stable. According to the experimental results, the frequency changes from 120 MHz to 190 MHz after the double-pass AOM, and the intensity of laser entering into the system is greatly changed, but there is almost no change in the error signal of the FTMTS spectrum. Using this signal to lock the laser frequency, we can ensure that the frequency of the laser changes with the amount of AOM shift. Therefore, the magneto-optical trap (MOT)-molasses process can be implemented smoothly.
基金supported by the National Natural Science Foundation of China(Grant No.51677149)
文摘To overcome hole-injection limitation of p^+-n emitter junction in 4H-SiC light triggered thyristor, a novel high- voltage 4H-SiC light triggered thyristor with double-deck thin n-base structure is proposed and demonstrated by two- dimensional numerical simulations. In this new structure, the conventional thin n-base is split to double-deck. The hole- injection of p^+-n emitter junction is modulated by modulating the doping concentration and thickness of upper-deck thin n- base. With double-deck thin n-base, the current gain coefficient of the top pnp transistor in 4H-SiC light triggered thyristor is enhanced. As a result, the triggering light intensity and the turn-on delay time of 4H-SiC light triggered thyristor are both reduced. The simulation results show that the proposed 10-kV 4H-SiC light triggered thyristor is able to be triggered on by 500-mW/cm^2 ultraviolet light pulse. Meanwhile, the turn-on delay time of the proposed thyristor is reduced to 337 ns.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774044)the National Key Basic Research and Development Program of China(Grant No.2010CB922903)+1 种基金the Science and Technology Commission of Shanghai Municipality of China(Grant No.07JC14019)Shanghai Pujiang Talent Program of China(Grant No.07PJ14038)
文摘The modulation transfer spectroscopy in an ytterbium hollow cathode lamp at 399 nm is measured. The error signal for frequency locking is optimized by measuring the dependences of its slope, linewidth and magnitude on various parameters. Under the optimum condition, the laser frequency at 399 nm can be stabilized. The long-term stability of laser frequency is measured by monitoring the fluorescence signal of the ytterbium atomic beam induced by the locked laser. The laser frequency is shown to be tightly locked, and the stabilized laser is successfully applied to the cooling of ytterbium atoms.
文摘Although envelope spectrum does not involve complicated sideband,thus has a much simpler structure than the common Fourier spectrum,it is still subject to the efect of planets passing or time variant vibration transfer pams.The presence of planets passing frequency,sun gear rotating frequency,or planet carrier rotating frequency in the envelope spectrum may confuse the analysis in fault diagnosis.Therefore,it is important to look for an approach to remove the interferences caused by the efect of planets passing or time variant vibration transfer paths.
基金supported by the Next Generation of Beidou Navigation Satellite(GFZX0301020104)
文摘Based on the theory of the passive hydrogen maser, along with the technology of frequency modulation and modulation transfer spectroscopy, the theoretical expression of the single frequency modulation for the passive hydrogen maser and the function of the cavity and H line error signals separation are derived, which are basically coincident with the experiment. The absorption and dispersion spectrum curves with different resonance widths show that the cavity and hydrogen transition serve as discriminators, and the two error signals can be separated. Through the calculations of the two error signals in the passive hydrogen maser, it analyzes the traditional method of the two error signals separation, and then describes a new improved method for the passive hydrogen servo loops consisting in the use of a single modulation frequency and frequency discrimination. A null interaction of the two error signals for the new selection of the phase setting is deduced theoretically and validated by the simulation. The preliminary experimental result confirms the feasibility of this new approach, which can reduce the influence from the cavity frequency variety on the crystal oscillator and contribute significantly to the long term performance of the passive hydrogen maser.
文摘In this study, a method for determining the intrinsic recombination velocity at the junction of a silicon solar cell is presented. The expression of intrinsic recombination velocity at the junction was established under irradiation in frequency modulation. Based on this expression, an electrical model of the intrinsic recombination velocity at the junction is presented.
基金financial supports from National Key Research and Development Program of China (No.2019YFB2203402)National Natural Science Foundation of China (Nos.11874029 and 92050108)+4 种基金Guangdong Science and Technology Program International Cooperation Program (Nos.2021A0505030038)Guangdong Basic and Applied Basic Research Foundation (Nos.2020B1515020037 and 2022B1515020069)Pearl River Talent Plan Program of Guangdong (No.2019QN01X120)Fundamental Research Funds for the Central Universities (No.21621108)supported by UK EPSRC Grant EP/T00097X/1
文摘Epsilon-near-zero(ENZ)modes have attracted extensive interests due to its ultrasmall mode volume resulting in ex-tremely strong light-matter interaction(LMI)for active optoelectronic devices.The ENZ modes can be electrically toggled between on and off states with a classic metal-insulator-semiconductor(MIS)configuration and therefore allow access to electro-absorption(E-A)modulation.Relying on the quantum confinement of charge-carriers in the doped semiconductor,the fundamental limitation of achieving high modulation efficiency with MIS junction is that only a nanometer-thin ENZ confinement layer can contribute to the strength of E-A.Further,for the ENZ based spatial light modulation,the require-ment of resonant coupling inevitably leads to small absolute modulation depth and limited spectral bandwidth as restric-ted by the properties of the plasmonic or high-Q resonance systems.In this paper,we proposed and demonstrated a dual-ENZ mode scheme for spatial light modulation with a TCOs/dielectric/silicon nanotrench configuration for the first time.Such a SIS junction can build up two distinct ENZ layers arising from the induced charge-carriers of opposite polar-ities adjacent to both faces of the dielectric layer.The non-resonant and low-loss deep nanotrench framework allows the free space light to be modulated efficiently via interaction of dual ENZ modes in an elongated manner.Our theoretical and experimental studies reveal that the dual ENZ mode scheme in the SIS configuration leverages the large modulation depth,extended spectral bandwidth together with high speed switching,thus holding great promise for achieving electric-ally addressed spatial light modulation in near-to mid-infrared regions.
基金the National Key Research and Development Program of China(Grant No.2017YFA0304401)Key-Area Research and Development Program of GuangDong Province,China(Grant No.2019B030330001)the National Natural Science Foundation of China(Grant Nos.11174095,61875065,91536116,and 11804108).
文摘We report construction of an iodine-stabilized laser frequency standard at 532 nm based on modulation transfer spectroscopy(MTS)technology with good reproducibility.A frequency stability of 2.5×10^(-14)at 1 s averaging time is achieved,and the frequency reproducibility has a relative uncertainty of 3.5×10^(-13),demonstrating the great stability of our setup.The systematic uncertainty of the iodine-stabilized laser frequency standard is evaluated,especially the contribution of the residual amplitude modulation(RAM).The contribution of the RAM in MTS cannot be evaluated directly.To solve this problem,we theoretically deduce the MTS signal with RAM under large modulation depth,and prove that the non-symmetric shape of the MTS signal is directly related to the MTS effect.The non-symmetric shape factor can be calibrated with a frequency comb,and in real experiments,this value can be obtained by least-squares fitting of the MTS signal,from which we can infer the RAMinduced frequency shift.The full frequency uncertainty is evaluated to be 5.3 kHz(corresponding to a relative frequency uncertainty of 9.4×10^(-12)).The corrected transition frequency has a difference from the BIPM-recommended value of 2 kHz,which is within 1σ uncertainty,proving the validity of our evaluation.
基金the National Natural Science Foundation of China (60272077) the Science Foundation of Aeronautics (02F53030).
文摘A new method of estimating the frequency-known signals from the strong background noise was presented first. Then the new method was used in the demodulation of the digital frequency modulation (FSK) signals. The new demodulation method can complete the demodulation of the FSK signals only with the carrier frequency and without any carrier phase information. The simulation results show that the performance of anti-noise of the new method is better than that of the incoherent demodulation method and the fluctuation of the carrier phase has little effect on the new method. So the new demodulation method has a fine prospect in the practical applications.
文摘Switch mode power supply (SMPS) is good selection for power supplies of Unmanned Aerial Vehicle (UAV), which is one of the most important interference sources of UAV. The power switches with their high dv/dt and di/dt switching slopes are the sources of electromagnetic interference (EMI). In this paper, a variable frequency modulation technology of the forward converter of UAV is presented, which is utilized in SMPS to improve electromagnetic compatibility (EMC). In variable-frequency techniques, power (signal) is transmitted in power converter in wide-band mode in several frequencies that are constantly changing, the EMI spectral performance of the SMPS can be controlled with the modulating pattern and modulation method. The validity of the models and analyses are confirmed experimentally by using a dc/dc forward converter.
基金in part by the National Natural Science Foundation of China under Grant 61771291,Grant 61671278in part by the Key Research and Development Project of Shandong Province under Grant 2018GGX101009,Grant 2019TSLH0202,Grant 2020CXGC010109+1 种基金in part by the National Nature Science Foundation of China for Excellent Young Scholars under Grant 61622111in part by the Project of International Cooperation and Exchanges NSFC under Grant 61860206005.
文摘In this paper,we design a spatial modulation based orthogonal time frequency space(SMOTFS)system to achieve improved transmission reliability and meet the high transmission rate and highspeed demands of future mobile communications,which fully utilizes the characteristics of spatial modulation(SM)and orthogonal time frequency space(OTFS)transmission.The detailed system design and signal processing of the SM-OTFS system have been presented.The closed-form expressions of the average symbol error rate(ASER)and average bit error rate(ABER)of the SM-OTFS system have been derived over the delay-Doppler channel with the help of the union bounding technique and moment-generating function(MGF).Meanwhile,the system complexity has been evaluated.Numerical results verify the correctness of the theoretical ASER and ABER analysis of the SM-OTFS system in the high signal-to-noise ratio(SNR)regions and also show that the SM-OTFS system outperforms the traditional SM based orthogonal frequency division multiplexing(SM-OFDM)system with limited complexity increase under mobile conditions,especially in high mobility scenarios.
基金supported by the National Natural Science Foundation of China(61871146)the Fundamental Research Funds for the Central Universities(FRFCU5710093720)。
文摘Ultrahigh resolution synthetic aperture radar(SAR)imaging for ship targets is significant in SAR imaging,but it suffers from high frequency vibration of the platform,which will induce defocus into SAR imaging results.In this paper,a novel compensation method based on the sinusoidal frequency modulation Fourier-Bessel transform(SFMFBT)is proposed,it can estimate the vibration errors,and the phase shift ambiguity can be avoided via extracting the time frequency ridge consequently.By constructing the corresponding compensation function and combined with the inverse SAR(ISAR)technique,well-focused imaging results can be obtained.The simulation imaging results of ship targets demonstrate the validity of the proposed approach.
基金This work was supported by the National Natural Science Foundation of China (Nos. 11574347, 11734017, 91630308, and 11374322), the Youth Talent Project of the Institute of Acoustics of Chinese Academy of Sciences (No. QNYC201619), and the PetroChina Innovation Foundation (No. 2016D-5007-0304).
文摘A wideband dipole signal is required for dipole dispersion correction and nearborehole imaging. To obtain the broadband flexural wave dispersion, we use a nonlinear frequency modulation (NLFM) signal and propose a segment linear frequency modulation (SLFM) signal as the dipole excitation signal to compensate for the excitation intensity. The signal-to-noise ratio (SNR) of the signal over the entire frequency band is increased. The finite-difference method is used to simulate the responses from a Ricker wavelet, a linear frequency modulation (LFM) signal, an NLFM signal, and an SLFM signal in two borehole models of a homogeneously hard formation and a radially stratified formation. The dispersion and radial tomography results at low SNR of the sound source signals are compared. Numerical modeling suggests that the energy of the flexural waves excited by the Ricker wavelet source is concentrated near the Airy phase. In this case, the dispersion is incomplete and information regarding the formation near or far from the borehole cannot be obtained. The LFM signal yields dispersion information near the Airy phase and the high-frequency range but not in the low-frequency range. Moreover, the information regarding the formation far from the borehole is not accurate. The NLFM signal extends the frequency range of the flexural waves by compensating for the excitation intensity and yields information regarding the formation information, but it is not easy to obtain. The SLFM signal yields the same results as the NLFM signal and is easier to implement. Consequently, the dipole detection range expands and the S-wave velocity calculation accuracy improves.
基金supported by the National Natural Science Foundation of China under Grant 62071364 and 62231027in part by the Key Research and Development Program of Shaanxi under Grant 2023-YBGY-249+1 种基金in part by the Key Research and Development Program of Guangxi under Grant 2022AB46002in part by the Fundamental Research Funds for the Central Universities under Grant KYFZ23001.
文摘Modulation recognition becomes unreliable at low signal-to-noise ratio(SNR)over fading channel.A novel method is proposed to recognize the digital modulated signals with frequency and phase offsets over multi-path fading channels in this paper.This method can overcome the effects of phase offset,Gaussian noise and multi-path fading.To achieve this,firstly,the characteristic parameters search is constructed based on the cyclostationarity of received signals,to overcome the phase offset,Gaussian white noise,and influence caused by multi-path fading.Then,the carrier frequency of the received signal is estimated,and the maximum characteristic parameter is searched around the integer multiple carriers and their vicinities.Finally,the modulation types of the received signal with frequency and phase offsets are classified using decision thresholds.Simulation results demonstrate that the performance of the proposed method is better than the traditional methods when SNR is over 5dB,and that the proposed method is robust to frequency and phase offsets over multipath channels.
文摘This paper gives a spectrum expression which is simple and has a clear physical conception for pulse frequency modulation signal, and has been confirmed by an experiment simultaneously.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0401902 and 2016YFB0402001)Key-Area Research and Development Program of Guang Dong Province,China(Grant No.2019B010926001)。
文摘Phase modulation is a crucial step when the frequency-based wavefront optimization technique is exploited to measure the optical transmission matrix(TM) of a scattering medium. We report a simple but powerful method, direct digital frequency synthesis(DDS) technology to modulate the phase front of the laser and measure the TM. By judiciously modulating the phase front of a He–Ne laser beam, we experimentally generate a high quality focus at any targeted location through a 2 mm thick 120 grit ground glass diffuser, which is commercially used in laser display and laser holographic display for improving brightness uniformity and reducing speckle. The signal to noise ratio(SNR) of the clear round focus is 50 and the size is about 44 μm. Our study will open up new avenues for enhancing light energy delivery to the optical engine in laser TV to lower the power consumption, phase compensation to reduce the speckle noise, and controlling the lasing threshold in random lasers.