This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS)...This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.展开更多
To enhance the resilience of power systems with offshore wind farms(OWFs),a proactive scheduling scheme is proposed to unlock the flexibility of cloud data centers(CDCs)responding to uncertain spatial and temporal imp...To enhance the resilience of power systems with offshore wind farms(OWFs),a proactive scheduling scheme is proposed to unlock the flexibility of cloud data centers(CDCs)responding to uncertain spatial and temporal impacts induced by hurricanes.The total life simulation(TLS)is adopted to project the local weather conditions at transmission lines and OWFs,before,during,and after the hurricane.The static power curve of wind turbines(WTs)is used to capture the output of OWFs,and the fragility analysis of transmission-line components is used to formulate the time-varying failure rates of transmission lines.A novel distributionally robust ambiguity set is constructed with a discrete support set,where the impacts of hurricanes are depicted by these supports.To minimize load sheddings and dropping workloads,the spatial and temporal demand response capabilities of CDCs according to task migration and delay tolerance are incorporated into resilient management.The flexibilities of CDC’s power consumption are integrated into a two-stage distributionally robust optimization problem with conditional value at risk(CVaR).Based on Lagrange duality,this problem is reformulated into its deterministic counterpart and solved by a novel decomposition method with hybrid cuts,admitting fewer iterations and a faster convergence rate.The effectiveness of the proposed resilient management strategy is verified through case studies conducted on the modified IEEERTS 24 system,which includes 4 data centers and 5 offshore wind farms.展开更多
文摘This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.
基金the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant LAPS21002the State Key Laboratory of Disaster Prevention and Reduction for Power Grid Transmission and Distribution Equipment under Grant SGHNFZ00FBYJJS2100047.
文摘To enhance the resilience of power systems with offshore wind farms(OWFs),a proactive scheduling scheme is proposed to unlock the flexibility of cloud data centers(CDCs)responding to uncertain spatial and temporal impacts induced by hurricanes.The total life simulation(TLS)is adopted to project the local weather conditions at transmission lines and OWFs,before,during,and after the hurricane.The static power curve of wind turbines(WTs)is used to capture the output of OWFs,and the fragility analysis of transmission-line components is used to formulate the time-varying failure rates of transmission lines.A novel distributionally robust ambiguity set is constructed with a discrete support set,where the impacts of hurricanes are depicted by these supports.To minimize load sheddings and dropping workloads,the spatial and temporal demand response capabilities of CDCs according to task migration and delay tolerance are incorporated into resilient management.The flexibilities of CDC’s power consumption are integrated into a two-stage distributionally robust optimization problem with conditional value at risk(CVaR).Based on Lagrange duality,this problem is reformulated into its deterministic counterpart and solved by a novel decomposition method with hybrid cuts,admitting fewer iterations and a faster convergence rate.The effectiveness of the proposed resilient management strategy is verified through case studies conducted on the modified IEEERTS 24 system,which includes 4 data centers and 5 offshore wind farms.