Context/Objective: High blood pressure (HBP) currently represents the most widespread chronic non-communicable disease in Cameroon. The increase in its prevalence in the country is the result of multiple factors inclu...Context/Objective: High blood pressure (HBP) currently represents the most widespread chronic non-communicable disease in Cameroon. The increase in its prevalence in the country is the result of multiple factors including economic stress imposed by precariousness, poor living conditions, sources of anxiety, anguish, depression and other behavioral disorders. Economic stress is a globalizing concept that integrates into a purely hermeneutic approach, a particular functioning of the nervous system of an individual who faces employment problems and precarious remuneration conditions. The non-satisfaction by an individual of his basic needs due to insufficient financial means can cause him to become irritable, aggressive, and socially and symbolically isolated, thereby increasing the desire to resort to morbid life models such as excessive consumption of narcotics and other psychoactive substances often associated with high blood pressure. The fight against the emergence of BPH is a complex, multifaceted and multifactorial reality that requires taking into account economic stress. The main objective of this survey is to describe the situation of economic stress within the Cameroonian population, which imposes precariousness and life models at risk of high blood pressure. Specifically, we determined the level of household income and the sources of income. Methods: A cross-sectional survey with a descriptive aim among five hundred households in the Central Region of Cameroon was conducted. A probabilistic technique called simple randomness was used. The number of households to be surveyed was determined indirectly using the Cochrane formula. Data collection in face-to-face mode using a physical questionnaire took place from July 1 to August 31, 2023, after obtaining ethical clearance from the Regional Health Research Ethics Committee, Human from the Center and an administrative authorization for data collection. Regarding their processing, the data was grouped during processing in Excel sheets. Normality and reliability tests of the collected data were carried out. For this, the Chi-square test was used for data with a qualitative value and that of Kolmogorov-Sminorf for data with a quantitative value. Descriptive analysis was possible using R software version 3.2, SPSS version 25.0, XLSTAT 2016, PAST and EXCEL programs from Microsoft Office 2013. Results: The main results highlight economic stress, with 45.60% of households surveyed earning less than US$154 per month;55% of household heads were women in single-parent families;14% of household heads were unemployed, 22% worked in the private sector and 19% were self-employed. This general economic situation leads to precarious living conditions, thereby increasing the risk of high blood pressure among the Cameroonian population.展开更多
Abstract With the recent products being more reliable, engineers cannot obtain enough failure or degradation information through the design period and even the product lifetime, therefore, accel erated life test (ALT...Abstract With the recent products being more reliable, engineers cannot obtain enough failure or degradation information through the design period and even the product lifetime, therefore, accel erated life test (ALT) ihas become the most popular way to quantify the life characteristics of prod ucts. Test design is the most essential topic, such as testing duration, stress profile, data inference, etc. In this paper, a method and procedure based on theoretical life models is proposed to determine the accelerated stress profile. Firstly, the method for theoretical life calculation is put forward based on the main failure mechanism analysis and the theoretical life models. Secondly, the method is pro vided to determine the accelerated stress profile, including the method to determine the accelerated stress types and the stress range on the basis of the main failure mechanism analysis, the method to determine the acceleration factor and the accelerated stress level based on life quantitative calcula tion models, and the collaborative analysis method of the accelerated test time while taking the mul tiple failure mechanisms into consideration. Lastly, the actuator is taken as an example to describe the procedure of the method and the engineering applicability and the validity are verified.展开更多
The corrosion behavior and life of Sn−3.0Ag−0.5Cu solder joints were investigated through fire smoke exposure experiments within the temperature range of 45−80℃.The nonlinear Wiener process and Arrhenius equation wer...The corrosion behavior and life of Sn−3.0Ag−0.5Cu solder joints were investigated through fire smoke exposure experiments within the temperature range of 45−80℃.The nonlinear Wiener process and Arrhenius equation were used to establish the probability distribution function and prediction model of the solder joint’s average life and individual remaining useful life.The results indicate that solder joint resistance shows a nonlinear growth trend with time increasing.After 24 h,the solder joint transforms from spherical to rose-like shapes.Higher temperatures accelerate solder joint failure,and the relationship between failure time and temperature conforms to the Arrhenius equation.The predicted life of the model is in good agreement with experimental results,demonstrating the effectiveness and accuracy of the model.展开更多
Fatigue assessment of welded joint is still far from being completely solved now,since many influencing factors coexist and some important ones should be considered in the developed life prediction models reasonably.T...Fatigue assessment of welded joint is still far from being completely solved now,since many influencing factors coexist and some important ones should be considered in the developed life prediction models reasonably.Thus,such influencing factors of welded joint fatigue are firstly summarized in this work;and then,the existing life prediction models are reviewed from two aspects,i.e.,uniaxial and multiaxial ones;finally,significant conclusions of existing experimental and theoretical researches and some suggestions on improving the fatigue assessment of welded joints,especially for the low-cycle fatigue with the occurrence of ratchetting,are provided.展开更多
The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA-h) were presented. The lifespan was extrapolated based on this model. The results indicate that the relationship of cap...The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA-h) were presented. The lifespan was extrapolated based on this model. The results indicate that the relationship of capacity retention and cycle number can be expressed by Gaussian function. The selecting function and optimal precision were verified through actual match detection and a range of alternating current impedance testing. The cycle life model with high precision (〉99%) is beneficial to shortening the orediction time and cutting the prediction cost.展开更多
Nickel-based superalloys are easy to produce low cycle fatigue(LCF)damage when they are subjected to high temperature and mechanical stresses.Fatigue life prediction of nickel-based superalloys is of great importance ...Nickel-based superalloys are easy to produce low cycle fatigue(LCF)damage when they are subjected to high temperature and mechanical stresses.Fatigue life prediction of nickel-based superalloys is of great importance for their reliable practical application.To investigate the effects of total strain and grain size on LCF behavior,the high temperature LCF tests were carried out for a nickel-based superalloy.The results show that the fatigue lives decreased with the increase of strain amplitude and grain size.A new LCF life prediction model was established considering the effect of grain size on fatigue life.Error analyses indicate that the prediction accuracy of the new LCF life model is higher than those of Manson-Coffin relationship and Ostergren energy method.展开更多
The theory of economic life prediction and reliability assessment of aircraft structures has a significant effect on safety of air-craft structures.It is based on the two-stage theory of fatigue process and can guaran...The theory of economic life prediction and reliability assessment of aircraft structures has a significant effect on safety of air-craft structures.It is based on the two-stage theory of fatigue process and can guarantee the safety and reliability of structures.According to the fatigue damage process,the fatigue scatter factors of crack initiation stage and crack propagation stage are given respectively.At the same time,mathematical models of fatigue life prediction are presented by utilizing the fatigue scatter factors and full scale test results of aircraft structures.Furthermore,the economic life model is put forward.The model is of sig-nificant scientific value for products to provide longer economic life,higher reliability and lower cost.The theory of economic life prediction and reliability assessment of aircraft structures has been successfully applied to determining and extending the structural life for thousands of airplanes.展开更多
As one of the new structural layout in the family of woven composites, 2.5D Woven Composites(2.5D-WC) have recently attracted an increasing interest owing to its excellent properties, i.e. high specific strength and...As one of the new structural layout in the family of woven composites, 2.5D Woven Composites(2.5D-WC) have recently attracted an increasing interest owing to its excellent properties, i.e. high specific strength and fatigue resistance, in the aerospace and automobile industry. Indepth understanding of the fatigue behavior of this material at un-ambient temperatures is critical for the engineering applications, especially in aero-engine field. Here, fatigue behavior of 2.5D-WC at different temperatures was numerically investigated based on the unit cell approach. Firstly, the unit cell model of 2.5D-WC was established using ANSYS software. Subsequently, the temperature-dependent fatigue life prediction model was built up. Finally, the fatigue lives alongside the damage evolution processes of 2.5D-WC at ambient temperature(20 ℃) and unambient temperature(180 ℃) were analyzed. The results show that numerical results are in good agreement with the relevant experimental results at 20 and 180 ℃. Fatigue behavior of 2.5D-WC is also sensitive to temperature, which is partially attributed to the mechanical properties of resin and the change of inclination angle of warp yarns. We hope that the proposed fatigue life prediction model and the findings could further promote the engineering application of 2.5D-WC, especially in aero-engine field.展开更多
Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts ...Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts for failure modes are obtained with the Borda method. The risk indexes of failure modes are derived from the Borda matrix. Based on the support vector machine (SVM), a casing life prediction model is established. In the prediction model, eight risk indexes are defined as input vectors and casing life is defined as the output vector. The ideal model parameters are determined with the training set from 19 wells with casing failure. The casing life prediction software is developed with the SVM model as a predictor. The residual life of 60 wells with casing failure is predicted with the software, and then compared with the actual casing life. The comparison results show that the casing life prediction software with the SVM model has high accuracy.展开更多
In this paper, some results of the NBUCA class of life distribution are obtained.The preservation properties of NBUCA aging properties under anti-star-shaped transformation are investigated. The preservation of NBUCA ...In this paper, some results of the NBUCA class of life distribution are obtained.The preservation properties of NBUCA aging properties under anti-star-shaped transformation are investigated. The preservation of NBUCA aging properties under general accelerated life model are studied as well.展开更多
The lifespan of plasma-sprayed thermal barrier coating(TBC)systems is difficult to predict owing to the variety of microstructures and deterioration histories.In this study,we developed a novel TBC damage model to ref...The lifespan of plasma-sprayed thermal barrier coating(TBC)systems is difficult to predict owing to the variety of microstructures and deterioration histories.In this study,we developed a novel TBC damage model to reflect deterioration histories;thus,it can be applied to various TBCs.Damage to TBCs is classifed into oxidation and mechanical damage;therefore,a detailed deterioration history can be reflected.In addition,by introducing a virtual S–N diagram,a life prediction model that can be applied to TBCs with various microstructures was established.We used the proposed damage and life prediction models in isothermal aging and thermal cycle tests with different aging cycles.The predicted lifespan of TBCs by using the proposed models was within 95%of the results obtained by performing actual tests in the temperature range of 1150–1350℃.展开更多
To solve the durability of island and reef concrete engineering in the harsh environment of high temperature,high salt,high humidity and windy,the strength grade of concrete and the type of corrosion inhibitor were us...To solve the durability of island and reef concrete engineering in the harsh environment of high temperature,high salt,high humidity and windy,the strength grade of concrete and the type of corrosion inhibitor were used as the influence factors,while the relative dynamic elastic modulus was used as the evaluation index.In addition,the law and time variability of the deterioration of concrete,the size effect,environmental similarity and the service life model were studied.The results showed that improving the strength grade of concrete could improve the durability of concrete,and corrosion inhibitor could slightly improve the durability of concrete.Time-varying law of the deterioration of concrete conformed to the univariate quadratic polynomial.Combined with the concrete damage equivalent theory,a size effect model based on the relative dynamic elastic modulus was proposed and verified,and the size effect coefficient was also given.An environmental similarity model between simulated and practical island and reef environment was proposed.Combined with the reliability theory and the first order second moment method,a new service life model of concrete structure was proposed.The authors were convinced that the research will be advantageous to researchers.展开更多
The traction battery cycle life prediction method using performance degradation data was proposed. The example battery was a commercialized lithium-ion cell with LiMn2O4/Graphite cell system. The capacity faded with c...The traction battery cycle life prediction method using performance degradation data was proposed. The example battery was a commercialized lithium-ion cell with LiMn2O4/Graphite cell system. The capacity faded with cycle number follows a traction function path. Two cycle life predicting models were established. The possible cycle life was extrapolated, which follows normal distribution well. The distribution parameters were estimated and the battery reliability was evaluated. The models' precision was validated and the effect of the cycle number on the predicting precision was analysed. The cycle life models and reliability evaluation method resolved the difficulty of battery life appraisal, such as long period and high cost.展开更多
In view of the shortage of traditional life prediction methods for machine tools,such as low accuracy of life prediction and few samples basis attributes,a life prediction model of machine tools combined with machine ...In view of the shortage of traditional life prediction methods for machine tools,such as low accuracy of life prediction and few samples basis attributes,a life prediction model of machine tools combined with machine tool attributes is proposed.The life prediction model of machine tool adopts KL dispersion distribution theory,uses modal superposition method to carry out machine tool life analysis,calculates the theoretical life of machine tool,and then carries on the simulation,obtains the machine tool life prediction value.Compared with the traditional method of machine tool life prediction,the model is based on the application life fatigue damage model,which superimposes the service times and maintenance cycle of the machine tool,derives the influence factor of machine tool life,and obtains the linear relationship between the influence factor of machine tool life and the life of machine tool.The influence factor of machine tool life is introduced as the life prediction parameter of machine tool.The data transformation relationship of HT300 parts is constructed.The original part data is enhanced.The effective training set is obtained.The life prediction model of machine tool based on deep learning is completed.The quantitative analysis of machine tool life is carried out.The experiment of machine tool life prediction using training data set proves the validity of the model.Regression test was carried out on the training data set to reflect the robustness of the model.The prediction accuracy of the model is further verified by Weibull test.展开更多
Numerical calculations of creep damage development and life behavior of circular notched specimens of nickel-base single crystal had been performed. The creep stress distributions depend on the specimen geometry. For ...Numerical calculations of creep damage development and life behavior of circular notched specimens of nickel-base single crystal had been performed. The creep stress distributions depend on the specimen geometry. For a small notch radius, von Mises stress has an especial distribution. The damage distribution is greatly influenced by the notch depth, notch radius as well as notch type. The creep crack initiation place is different for each notched specimen. The characteristics of notch strengthening and notch weakening depend on the notch radius and notch type. For the same notch type, the creep rupture lives decrease with the decreasing of notch radius. A creep life model has been presented for the multiaxial stress states based on the crystallographic slip system theory.展开更多
Smooth and three types of U-shape single-edge notched plate specimens adopted to experimentally investigate stress rupture behavior of Ni-based Directionally Solidified(DS)superalloy at 850℃ exhibit notch weakening e...Smooth and three types of U-shape single-edge notched plate specimens adopted to experimentally investigate stress rupture behavior of Ni-based Directionally Solidified(DS)superalloy at 850℃ exhibit notch weakening effect and multi-source cracking initiation near the notch root.However,stress rupture behavior of smooth and V-shape notched round bars at 1040℃ revealed by Li et al indicates notch strengthening effect and creep micro-holes originating mostly from the central portion.A combined creep-viscoplastic constitutive model is employed to analyze the distribution of stress,strain and stress Triaxial Factor(TF)near the notch root.The different stress distribution and creep restraint between asymmetric notched plate specimens and symmetric notched round bars are the main reasons for the corresponding failure mechanism.Meanwhile,a good qualitative relationship exists between TF value and stress rupture life of notched specimen.Especially,the area with maximum TF value(TF_(max))is highly consistent with creep damage initiation region.Hence,based on the distribution characteristics of the initial tensile loading,a representative stress method independent of time-changing creep load at the location of TF_(max) is conducted for life prediction.The predicted results of both smooth and notched plate specimens and round bars agrees well with the experimental results.展开更多
Escape theory has been exceptionally successful in conceptualizing and accurately predicting effects of numerous factors that affect predation risk and explaining variation in flight initiation distance(FID;predator–...Escape theory has been exceptionally successful in conceptualizing and accurately predicting effects of numerous factors that affect predation risk and explaining variation in flight initiation distance(FID;predator–prey distance when escape begins).Less explored is the relative orientation of an approaching predator,prey,and its eventual refuge.The relationship between an approaching threat and its refuge can be expressed as an angle we call the“interpath angle”or“Φ,”which describes the angle between the paths of predator and prey to the prey’s refuge and thus expresses the degree to which prey must run toward an approaching predator.In general,we might expect that prey would escape at greater distances if they must flee toward a predator to reach its burrow.The“race for life”model makes formal predictions about howΦshould affect FID.We evaluated the model by studying escape decisions in yellow-bellied marmots Marmota flaviventer,a species which flees to burrows.We found support for some of the model’s predictions,yet the relationship betweenΦand FID was less clear.Marmots may not assessΦin a continuous fashion;but we found that binning angle into 445°bins explained a similar amount of variation as models that analyzed angle continuously.Future studies ofΦ,especially those that focus on how different species perceive relative orientation,will likely enhance our understanding of its importance in flight decisions.展开更多
A mathematical model for system life and reliability of a multiple power takeoffs aeroengine accessory gearbox transmission is presented.The geometry model of gear train is distributed into several subsystems by diffe...A mathematical model for system life and reliability of a multiple power takeoffs aeroengine accessory gearbox transmission is presented.The geometry model of gear train is distributed into several subsystems by different transmitted powers.The lives of each component are combined to determine the units,subsystems and entire system lives sequentially according to a strict series probability model.The unit and subsystem interface models are defined to dispose the loads of common components.The algorithm verification is presented and a numerical example is given to illustrate the use of this program.The initial design could not fulfill the life requirement.A design modification shows that the gear train has a more balanced life distribution by strengthening the weak parts,and the overall life of entire system is increased above the design requirement.This program can help the designer to approach an optimal accessory gearbox transmission design efficiently.展开更多
The effect of short-range ordering (SRO) on the low-cycle fatigue (LCF) behavior of low solid-solution hardening Ni-Cr alloys with high stacking fault energies (SFEs) was systematically studied under cycling at consta...The effect of short-range ordering (SRO) on the low-cycle fatigue (LCF) behavior of low solid-solution hardening Ni-Cr alloys with high stacking fault energies (SFEs) was systematically studied under cycling at constant total strain amplitude (Δε t /2) in the range of 0.1%–0.7%. The results show that an inducement of SRO structures can notably improve the fatigue life of the alloy regardless of Δε t /2, and several unique fatigue characteristics have been detected, including the transition of fatigue cracking mode from intergranular cracking to slip band cracking, the non-negligible evolution from non-Masing behavior in pure Ni to Masing behavior in the Ni-40Cr alloy, and the secondary cyclic hardening behavior in the Ni-10Cr and Ni-20Cr alloys. All these experimental phenomena are tightly associated with the transformation in cyclic deformation mechanisms that is induced by SRO based on the “glide plane softening” effect. Furthermore, a comprehensive fatigue life prediction model based on total hysteresis energy has been reasonably proposed, focusing on the analyses of the macroscopic model parameters (namely the fatigue cracking resistance exponent β and the crack propagation resistance parameter W 0 ) and microscopic damage mechanisms. In brief, on the premise that the effects of SFE and friction stress can be nearly ignored, as in the case of the present low solid-solution hardening Ni-Cr alloys with high SFEs, an enhancement of SRO in face-centered cubic metals has been convincingly confirmed to be an effective strategy to improve their LCF performance.展开更多
The possibility of a life prediction model for nickel base single crystal blades has been studied. The fatigue creep (FC) and thermal fatigue creep(TMFC) as well as creep experiments have been carried out with differe...The possibility of a life prediction model for nickel base single crystal blades has been studied. The fatigue creep (FC) and thermal fatigue creep(TMFC) as well as creep experiments have been carried out with different hold time of DD3. The hold time and the frequency as well as the temperature range are the main factors influencing the life. An emphasis has been put on the micro mechanism of the rupture of creep, FC and TMFC. Two main factors are the voiding and degeneration of the material for the cre...展开更多
文摘Context/Objective: High blood pressure (HBP) currently represents the most widespread chronic non-communicable disease in Cameroon. The increase in its prevalence in the country is the result of multiple factors including economic stress imposed by precariousness, poor living conditions, sources of anxiety, anguish, depression and other behavioral disorders. Economic stress is a globalizing concept that integrates into a purely hermeneutic approach, a particular functioning of the nervous system of an individual who faces employment problems and precarious remuneration conditions. The non-satisfaction by an individual of his basic needs due to insufficient financial means can cause him to become irritable, aggressive, and socially and symbolically isolated, thereby increasing the desire to resort to morbid life models such as excessive consumption of narcotics and other psychoactive substances often associated with high blood pressure. The fight against the emergence of BPH is a complex, multifaceted and multifactorial reality that requires taking into account economic stress. The main objective of this survey is to describe the situation of economic stress within the Cameroonian population, which imposes precariousness and life models at risk of high blood pressure. Specifically, we determined the level of household income and the sources of income. Methods: A cross-sectional survey with a descriptive aim among five hundred households in the Central Region of Cameroon was conducted. A probabilistic technique called simple randomness was used. The number of households to be surveyed was determined indirectly using the Cochrane formula. Data collection in face-to-face mode using a physical questionnaire took place from July 1 to August 31, 2023, after obtaining ethical clearance from the Regional Health Research Ethics Committee, Human from the Center and an administrative authorization for data collection. Regarding their processing, the data was grouped during processing in Excel sheets. Normality and reliability tests of the collected data were carried out. For this, the Chi-square test was used for data with a qualitative value and that of Kolmogorov-Sminorf for data with a quantitative value. Descriptive analysis was possible using R software version 3.2, SPSS version 25.0, XLSTAT 2016, PAST and EXCEL programs from Microsoft Office 2013. Results: The main results highlight economic stress, with 45.60% of households surveyed earning less than US$154 per month;55% of household heads were women in single-parent families;14% of household heads were unemployed, 22% worked in the private sector and 19% were self-employed. This general economic situation leads to precarious living conditions, thereby increasing the risk of high blood pressure among the Cameroonian population.
基金supported by the Ministry Level Project of China
文摘Abstract With the recent products being more reliable, engineers cannot obtain enough failure or degradation information through the design period and even the product lifetime, therefore, accel erated life test (ALT) ihas become the most popular way to quantify the life characteristics of prod ucts. Test design is the most essential topic, such as testing duration, stress profile, data inference, etc. In this paper, a method and procedure based on theoretical life models is proposed to determine the accelerated stress profile. Firstly, the method for theoretical life calculation is put forward based on the main failure mechanism analysis and the theoretical life models. Secondly, the method is pro vided to determine the accelerated stress profile, including the method to determine the accelerated stress types and the stress range on the basis of the main failure mechanism analysis, the method to determine the acceleration factor and the accelerated stress level based on life quantitative calcula tion models, and the collaborative analysis method of the accelerated test time while taking the mul tiple failure mechanisms into consideration. Lastly, the actuator is taken as an example to describe the procedure of the method and the engineering applicability and the validity are verified.
基金National Natural Science Foundation of China (No. 52206180)Fundamental Research Funds for the Central Universities,China (No. WK2320000050)。
文摘The corrosion behavior and life of Sn−3.0Ag−0.5Cu solder joints were investigated through fire smoke exposure experiments within the temperature range of 45−80℃.The nonlinear Wiener process and Arrhenius equation were used to establish the probability distribution function and prediction model of the solder joint’s average life and individual remaining useful life.The results indicate that solder joint resistance shows a nonlinear growth trend with time increasing.After 24 h,the solder joint transforms from spherical to rose-like shapes.Higher temperatures accelerate solder joint failure,and the relationship between failure time and temperature conforms to the Arrhenius equation.The predicted life of the model is in good agreement with experimental results,demonstrating the effectiveness and accuracy of the model.
基金supported by the National Natural Science Foundation of China(Grant 11532010).
文摘Fatigue assessment of welded joint is still far from being completely solved now,since many influencing factors coexist and some important ones should be considered in the developed life prediction models reasonably.Thus,such influencing factors of welded joint fatigue are firstly summarized in this work;and then,the existing life prediction models are reviewed from two aspects,i.e.,uniaxial and multiaxial ones;finally,significant conclusions of existing experimental and theoretical researches and some suggestions on improving the fatigue assessment of welded joints,especially for the low-cycle fatigue with the occurrence of ratchetting,are provided.
基金Projects(51204209,51274240)supported by the National Natural Science Foundation of ChinaProject(HNDLKJ[2012]001-1)supported by Henan Electric Power Science&Technology Supporting Program,China
文摘The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA-h) were presented. The lifespan was extrapolated based on this model. The results indicate that the relationship of capacity retention and cycle number can be expressed by Gaussian function. The selecting function and optimal precision were verified through actual match detection and a range of alternating current impedance testing. The cycle life model with high precision (〉99%) is beneficial to shortening the orediction time and cutting the prediction cost.
基金Project(51575129) supported by the National Natural Science Foundation of ChinaProject(J15LA51) supported by Shandong Province Higher Educational Science and Technology Program,ChinaProject(2017T100238) supported by China Postdoctoral Science Foundation
文摘Nickel-based superalloys are easy to produce low cycle fatigue(LCF)damage when they are subjected to high temperature and mechanical stresses.Fatigue life prediction of nickel-based superalloys is of great importance for their reliable practical application.To investigate the effects of total strain and grain size on LCF behavior,the high temperature LCF tests were carried out for a nickel-based superalloy.The results show that the fatigue lives decreased with the increase of strain amplitude and grain size.A new LCF life prediction model was established considering the effect of grain size on fatigue life.Error analyses indicate that the prediction accuracy of the new LCF life model is higher than those of Manson-Coffin relationship and Ostergren energy method.
基金National Natural Science Foundation of China (50135010)
文摘The theory of economic life prediction and reliability assessment of aircraft structures has a significant effect on safety of air-craft structures.It is based on the two-stage theory of fatigue process and can guarantee the safety and reliability of structures.According to the fatigue damage process,the fatigue scatter factors of crack initiation stage and crack propagation stage are given respectively.At the same time,mathematical models of fatigue life prediction are presented by utilizing the fatigue scatter factors and full scale test results of aircraft structures.Furthermore,the economic life model is put forward.The model is of sig-nificant scientific value for products to provide longer economic life,higher reliability and lower cost.The theory of economic life prediction and reliability assessment of aircraft structures has been successfully applied to determining and extending the structural life for thousands of airplanes.
基金supported by Jiangsu Innovation Program fo Graduate Education (No. KYLX_0237)
文摘As one of the new structural layout in the family of woven composites, 2.5D Woven Composites(2.5D-WC) have recently attracted an increasing interest owing to its excellent properties, i.e. high specific strength and fatigue resistance, in the aerospace and automobile industry. Indepth understanding of the fatigue behavior of this material at un-ambient temperatures is critical for the engineering applications, especially in aero-engine field. Here, fatigue behavior of 2.5D-WC at different temperatures was numerically investigated based on the unit cell approach. Firstly, the unit cell model of 2.5D-WC was established using ANSYS software. Subsequently, the temperature-dependent fatigue life prediction model was built up. Finally, the fatigue lives alongside the damage evolution processes of 2.5D-WC at ambient temperature(20 ℃) and unambient temperature(180 ℃) were analyzed. The results show that numerical results are in good agreement with the relevant experimental results at 20 and 180 ℃. Fatigue behavior of 2.5D-WC is also sensitive to temperature, which is partially attributed to the mechanical properties of resin and the change of inclination angle of warp yarns. We hope that the proposed fatigue life prediction model and the findings could further promote the engineering application of 2.5D-WC, especially in aero-engine field.
基金support from "973 Project" (Contract No. 2010CB226706)
文摘Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts for failure modes are obtained with the Borda method. The risk indexes of failure modes are derived from the Borda matrix. Based on the support vector machine (SVM), a casing life prediction model is established. In the prediction model, eight risk indexes are defined as input vectors and casing life is defined as the output vector. The ideal model parameters are determined with the training set from 19 wells with casing failure. The casing life prediction software is developed with the SVM model as a predictor. The residual life of 60 wells with casing failure is predicted with the software, and then compared with the actual casing life. The comparison results show that the casing life prediction software with the SVM model has high accuracy.
基金Supported by the National Natural Science Foundation of China(10747003) Supported by the Science Foundation of Kashgar Teacher's College(142498)
文摘In this paper, some results of the NBUCA class of life distribution are obtained.The preservation properties of NBUCA aging properties under anti-star-shaped transformation are investigated. The preservation of NBUCA aging properties under general accelerated life model are studied as well.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant,funded by the Korean government(MOTIE)(No.20193310100030)the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2018R1A2A1A05077886)。
文摘The lifespan of plasma-sprayed thermal barrier coating(TBC)systems is difficult to predict owing to the variety of microstructures and deterioration histories.In this study,we developed a novel TBC damage model to reflect deterioration histories;thus,it can be applied to various TBCs.Damage to TBCs is classifed into oxidation and mechanical damage;therefore,a detailed deterioration history can be reflected.In addition,by introducing a virtual S–N diagram,a life prediction model that can be applied to TBCs with various microstructures was established.We used the proposed damage and life prediction models in isothermal aging and thermal cycle tests with different aging cycles.The predicted lifespan of TBCs by using the proposed models was within 95%of the results obtained by performing actual tests in the temperature range of 1150–1350℃.
基金supported by the National Natural Science Foundation of China(Grant Nos.51878350 and 11832013).
文摘To solve the durability of island and reef concrete engineering in the harsh environment of high temperature,high salt,high humidity and windy,the strength grade of concrete and the type of corrosion inhibitor were used as the influence factors,while the relative dynamic elastic modulus was used as the evaluation index.In addition,the law and time variability of the deterioration of concrete,the size effect,environmental similarity and the service life model were studied.The results showed that improving the strength grade of concrete could improve the durability of concrete,and corrosion inhibitor could slightly improve the durability of concrete.Time-varying law of the deterioration of concrete conformed to the univariate quadratic polynomial.Combined with the concrete damage equivalent theory,a size effect model based on the relative dynamic elastic modulus was proposed and verified,and the size effect coefficient was also given.An environmental similarity model between simulated and practical island and reef environment was proposed.Combined with the reliability theory and the first order second moment method,a new service life model of concrete structure was proposed.The authors were convinced that the research will be advantageous to researchers.
文摘The traction battery cycle life prediction method using performance degradation data was proposed. The example battery was a commercialized lithium-ion cell with LiMn2O4/Graphite cell system. The capacity faded with cycle number follows a traction function path. Two cycle life predicting models were established. The possible cycle life was extrapolated, which follows normal distribution well. The distribution parameters were estimated and the battery reliability was evaluated. The models' precision was validated and the effect of the cycle number on the predicting precision was analysed. The cycle life models and reliability evaluation method resolved the difficulty of battery life appraisal, such as long period and high cost.
文摘In view of the shortage of traditional life prediction methods for machine tools,such as low accuracy of life prediction and few samples basis attributes,a life prediction model of machine tools combined with machine tool attributes is proposed.The life prediction model of machine tool adopts KL dispersion distribution theory,uses modal superposition method to carry out machine tool life analysis,calculates the theoretical life of machine tool,and then carries on the simulation,obtains the machine tool life prediction value.Compared with the traditional method of machine tool life prediction,the model is based on the application life fatigue damage model,which superimposes the service times and maintenance cycle of the machine tool,derives the influence factor of machine tool life,and obtains the linear relationship between the influence factor of machine tool life and the life of machine tool.The influence factor of machine tool life is introduced as the life prediction parameter of machine tool.The data transformation relationship of HT300 parts is constructed.The original part data is enhanced.The effective training set is obtained.The life prediction model of machine tool based on deep learning is completed.The quantitative analysis of machine tool life is carried out.The experiment of machine tool life prediction using training data set proves the validity of the model.Regression test was carried out on the training data set to reflect the robustness of the model.The prediction accuracy of the model is further verified by Weibull test.
基金supported by the National Natural Science Foundation of China(50005016,50375124)Natural Science Foundation of Shaanxi Province and China Aviation Foundation(02C53011,03B53003)as well as the Yangtze River Foundation
文摘Numerical calculations of creep damage development and life behavior of circular notched specimens of nickel-base single crystal had been performed. The creep stress distributions depend on the specimen geometry. For a small notch radius, von Mises stress has an especial distribution. The damage distribution is greatly influenced by the notch depth, notch radius as well as notch type. The creep crack initiation place is different for each notched specimen. The characteristics of notch strengthening and notch weakening depend on the notch radius and notch type. For the same notch type, the creep rupture lives decrease with the decreasing of notch radius. A creep life model has been presented for the multiaxial stress states based on the crystallographic slip system theory.
基金the funding of Natural Science Foundation of Hunan Province, China (No. 2021JJ40741)Fundamental Research Funds for the Central Universities of Central South University (No. 2021zzts0911)National Science and Technology Major Project (No. J2019-IV-0017-0085)
文摘Smooth and three types of U-shape single-edge notched plate specimens adopted to experimentally investigate stress rupture behavior of Ni-based Directionally Solidified(DS)superalloy at 850℃ exhibit notch weakening effect and multi-source cracking initiation near the notch root.However,stress rupture behavior of smooth and V-shape notched round bars at 1040℃ revealed by Li et al indicates notch strengthening effect and creep micro-holes originating mostly from the central portion.A combined creep-viscoplastic constitutive model is employed to analyze the distribution of stress,strain and stress Triaxial Factor(TF)near the notch root.The different stress distribution and creep restraint between asymmetric notched plate specimens and symmetric notched round bars are the main reasons for the corresponding failure mechanism.Meanwhile,a good qualitative relationship exists between TF value and stress rupture life of notched specimen.Especially,the area with maximum TF value(TF_(max))is highly consistent with creep damage initiation region.Hence,based on the distribution characteristics of the initial tensile loading,a representative stress method independent of time-changing creep load at the location of TF_(max) is conducted for life prediction.The predicted results of both smooth and notched plate specimens and round bars agrees well with the experimental results.
基金K.W.was supported by the National Science Foundation’s Research Experience for Undergraduates grant program(DBI 126713 to the Rocky Mountain Biological Laboratory)as well as the University of Connecticut Department of Ecology and Evolutionary Biology Katie Bu Undergraduate Research Award.J.G.was supported by the Rocky Mountain Biological LaboratoryD.T.B.was supported by the National Science Foundation(DEB-1119660 and 1557130 to D.T.B.as well as DBI-126713 to the Rocky Mountain Biological Laboratory).
文摘Escape theory has been exceptionally successful in conceptualizing and accurately predicting effects of numerous factors that affect predation risk and explaining variation in flight initiation distance(FID;predator–prey distance when escape begins).Less explored is the relative orientation of an approaching predator,prey,and its eventual refuge.The relationship between an approaching threat and its refuge can be expressed as an angle we call the“interpath angle”or“Φ,”which describes the angle between the paths of predator and prey to the prey’s refuge and thus expresses the degree to which prey must run toward an approaching predator.In general,we might expect that prey would escape at greater distances if they must flee toward a predator to reach its burrow.The“race for life”model makes formal predictions about howΦshould affect FID.We evaluated the model by studying escape decisions in yellow-bellied marmots Marmota flaviventer,a species which flees to burrows.We found support for some of the model’s predictions,yet the relationship betweenΦand FID was less clear.Marmots may not assessΦin a continuous fashion;but we found that binning angle into 445°bins explained a similar amount of variation as models that analyzed angle continuously.Future studies ofΦ,especially those that focus on how different species perceive relative orientation,will likely enhance our understanding of its importance in flight decisions.
文摘A mathematical model for system life and reliability of a multiple power takeoffs aeroengine accessory gearbox transmission is presented.The geometry model of gear train is distributed into several subsystems by different transmitted powers.The lives of each component are combined to determine the units,subsystems and entire system lives sequentially according to a strict series probability model.The unit and subsystem interface models are defined to dispose the loads of common components.The algorithm verification is presented and a numerical example is given to illustrate the use of this program.The initial design could not fulfill the life requirement.A design modification shows that the gear train has a more balanced life distribution by strengthening the weak parts,and the overall life of entire system is increased above the design requirement.This program can help the designer to approach an optimal accessory gearbox transmission design efficiently.
基金financially supported by the National Natural Science Foundation of China(NSFC)under Grant Nos.51571058 and 52171108。
文摘The effect of short-range ordering (SRO) on the low-cycle fatigue (LCF) behavior of low solid-solution hardening Ni-Cr alloys with high stacking fault energies (SFEs) was systematically studied under cycling at constant total strain amplitude (Δε t /2) in the range of 0.1%–0.7%. The results show that an inducement of SRO structures can notably improve the fatigue life of the alloy regardless of Δε t /2, and several unique fatigue characteristics have been detected, including the transition of fatigue cracking mode from intergranular cracking to slip band cracking, the non-negligible evolution from non-Masing behavior in pure Ni to Masing behavior in the Ni-40Cr alloy, and the secondary cyclic hardening behavior in the Ni-10Cr and Ni-20Cr alloys. All these experimental phenomena are tightly associated with the transformation in cyclic deformation mechanisms that is induced by SRO based on the “glide plane softening” effect. Furthermore, a comprehensive fatigue life prediction model based on total hysteresis energy has been reasonably proposed, focusing on the analyses of the macroscopic model parameters (namely the fatigue cracking resistance exponent β and the crack propagation resistance parameter W 0 ) and microscopic damage mechanisms. In brief, on the premise that the effects of SFE and friction stress can be nearly ignored, as in the case of the present low solid-solution hardening Ni-Cr alloys with high SFEs, an enhancement of SRO in face-centered cubic metals has been convincingly confirmed to be an effective strategy to improve their LCF performance.
基金National Natural Science F oundation of China (5 0 0 0 5 0 16) Aviation F oundation (0 0 B5 3 0 10 ) as well as theYangtze River Foundation
文摘The possibility of a life prediction model for nickel base single crystal blades has been studied. The fatigue creep (FC) and thermal fatigue creep(TMFC) as well as creep experiments have been carried out with different hold time of DD3. The hold time and the frequency as well as the temperature range are the main factors influencing the life. An emphasis has been put on the micro mechanism of the rupture of creep, FC and TMFC. Two main factors are the voiding and degeneration of the material for the cre...