From a life cycle perspective,the material flow analysis is utilized to investigate the lithium material flows in international trade from 2000 to 2019.The results reveal that at the global level,the total volume of l...From a life cycle perspective,the material flow analysis is utilized to investigate the lithium material flows in international trade from 2000 to 2019.The results reveal that at the global level,the total volume of lithium trade grew rapidly,reaching 121116 t in 2019.Lithium trade was dominated by lithium minerals,lithium carbonate and lithium hydroxide rather than final lithium products,indicating an immaturity in global lithium industry.At the intercontinental level,Asia’s import trade and Oceania’s export trade led the world,accounting for 81.22%and 39.68%,respectively.At the national level,China,Japan and Korea became the main importers,while Chile and Australia were the main exporters.In addition,China’s trade volume far exceeded that of the United States.China’s exports were dominated by lithium-ion batteries,while the United States mainly imported lithium-ion batteries,proving that the development of China’s lithium industry was relatively faster.展开更多
The purpose of this paper is to identify the processes with the highest contribution to potential environmental impacts in the life cycle of the masonry of concrete blocks by evaluating their main emissions contributi...The purpose of this paper is to identify the processes with the highest contribution to potential environmental impacts in the life cycle of the masonry of concrete blocks by evaluating their main emissions contributing to impact categories and identifying hotspots for environmental improvements.The research is based on the Life Cycle Assessment(LCA)study of non-load-bearing masonry of concrete blocks performed by the authors.The processes those have demonstrated higher contribution to environmental impacts were identified in the Life Cycle Impact Assessment(LCIA)phase and a detailed analysis was carried out on the main substances derived from these processes.The highest potential impacts in the life cycle of the concrete blocks masonry can be attributed mainly to emissions coming from the production of Portland cement,which explains the peak of impact potential on the blocks production stage,but also the significant impact potential in the use of the blocks for masonry construction,due to the use of cement mortar.The results of this LCA study are part of a major research on the comparative analysis of different typologies of non-load-bearing external walls,which aims to contribute to the creation of a life cycle database of major building systems,to be used by the environmental certification systems of buildings.展开更多
Coal is a versatile energy resource and was a driver of the industrial revolution that transformed the economies of Europe and North America and the trajectory of civilization.In this work,a technoeconomic analysis wa...Coal is a versatile energy resource and was a driver of the industrial revolution that transformed the economies of Europe and North America and the trajectory of civilization.In this work,a technoeconomic analysis was performed for a coal-to-carbonfiber manufacture process developed at the University of Kentucky’s Center for Applied Energy Research.According to this process,coal,with decant oil as the solvent,was converted to mesophase pitch via solvent extraction,and the mesophase pitch was subsequently converted to carbon fiber.The total cost to produce carbon fibers from coal and decant oil via the solvent extraction process was estimated to be$11.50/kg for 50,000-tow pitch carbon fiber with a production volume of 3750 MT/year.The estimated carbon fiber cost was significantly lower than the current commercially available PAN-based carbon fiber price($20–$30/kg).With decant oil recycling rates of 50%and 70%in the solvent extraction process,the manufacturing cost of carbon fiber was estimated to be$9.90/kg and$9.50/kg of carbon fiber,respectively.A cradle-to-gate energy assessment revealed that carbon fiber derived from coal exhibited an embodied energy of 510 MJ/kg,significantly lower than that of conventionally produced carbon fiber from PAN.This notable difference is primarily attributed to the substantially higher conversion rate of coal-based mesophase pitch fibers into carbon fiber,surpassing PAN fibers by 1.6 times.These findings indicate that using coal for carbon fiber production through solvent extraction methods could offer a more energy-efficient and cost-competitive alternative to the traditional PAN based approach.展开更多
As mining activities expand deeper,deep high-temperature formations seriously threaten the future safe exploitation,while deep geothermal energy has great potential for development.Combining the formation cooling and ...As mining activities expand deeper,deep high-temperature formations seriously threaten the future safe exploitation,while deep geothermal energy has great potential for development.Combining the formation cooling and geothermal mining in mines to establish a thermos-hydraulic coupling numerical model for fractured formation.The study investigates the formation heat transfer behaviour,heat recovery performance and thermal economic benefits influenced during the life cycle.The results show that the accumulation of cold energy during the cold storage phase induces a decline in formation temperature.The heat recovery phase is determined by the extent of the initial cold domain,which contracts inward from the edge and decelerates the heat recovery rate gradually.With groundwater velocity increases,the thermal regulation efficiency gradually increases,the production temperature decreases,while the effective radius and thermal power increase first and then decrease.The injected volume and temperature significantly affect,with higher injection temperatures slowing thermal recovery,and the thermal regulation efficiency is more sensitive to changes in formation permeability and thermal conductivity.The heat extraction performance is positively correlated with all factors.The levelized cost of electricity is estimated at 0.1203$/(kW·h)during the cold storage.During the heat recovery,annual profit is primarily driven by cooling benefits.展开更多
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ...Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.展开更多
为了准确评估温拌再生融合技术的环境效益,基于生命周期法确定路面建设期间环境效益的边界范围,建立碳排放计算模型。通过现场调查及数据分析,运用模型分别计算温拌再生技术与热拌技术的能耗及温室气体排放。最终对比分析了温拌再生融...为了准确评估温拌再生融合技术的环境效益,基于生命周期法确定路面建设期间环境效益的边界范围,建立碳排放计算模型。通过现场调查及数据分析,运用模型分别计算温拌再生技术与热拌技术的能耗及温室气体排放。最终对比分析了温拌再生融合技术的节能减排效益。结果表明:温拌再生路面施工过程中,原材料生产能耗324.47 MJ,温室气体排放为19.65 kg CO_(2e),混合料拌和能耗为217.28 MJ,温室气体排放为18.15 kg CO_(2e)。与热拌技术相比,温拌再生融合技术在混合料拌和阶段能耗和温室气体排放都有减少,RAP掺量为40%时,温拌再生路面建设期能耗节约33.33%,CO_(2)排放降低20.11%。展开更多
Pavement performance and economic efficiency are researched on the perpetual test pavement of Yijiang-Suzhou Express Highway in Jiangsu province, China. Test sections were continuously monitored. The conditions and de...Pavement performance and economic efficiency are researched on the perpetual test pavement of Yijiang-Suzhou Express Highway in Jiangsu province, China. Test sections were continuously monitored. The conditions and developing laws of deflection, rutting and cracking are compared among the perpetual pavement with the rich binder layer (RBL), the perpetual pavement without the RBL, and the conventional semi-rigid asphalt pavement in the past eight years after opening for traffic. Economical evaluation is conducted via life cycle cost analysis (LCCA). Based on the performance comparison and LCCA analysis, sections with the RBL have good crack resistance, but they are not very satisfactory in the aspect of permanent deformation; the conventional semi-rigid asphalt pavement is the least economic one due to requiring more frequent maintenance. Research results show that the perpetual pavement without RBL is a more appropriate structure for the test site.展开更多
Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments s...Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments set sustainability targets and implement corresponding measures.Nevertheless,critics of the globalized system claim that a territorial administrative scale is better suited to address sustainability issues.Yet,at the subnational level,local authorities rarely apply a systemic environmental assessment to enhance their action plans.This paper employs a territorial life cycle assessment methodology to improve local environmental agri-food planning.The objective is to identify significant direct and indirect environmental hotspots,their origins,and formulate effective mitigation strategies.The methodology is applied to the administrative department of Finistere,a strategic agricultural region in North-Western France.Multiple environmental criteria including climate change,fossil resource scarcity,toxicity,and land use are modeled.The findings reveal that the primary environmental hotspots of the studied local food system arise from indirect sources,such as livestock feed or diesel consumption.Livestock reduction and organic farming conversion emerge as the most environmentally efficient strategies,resulting in a 25%decrease in the climate change indicator.However,the overall modeled impact reduction is insufficient following national objectives and remains limited for the land use indicator.These results highlight the innovative application of life cycle assessment led at a local level,offering insights for the further advancement of systematic and prospective local agri-food assessment.Additionally,they provide guidance for local authorities to enhance the sustainability of planning strategies.展开更多
Papermaking industry is a high-energy-consuming industry with long supply chain.The growth of paper product demand further intensifies the need of energy consumption.Energy saving through the full supply chain has bec...Papermaking industry is a high-energy-consuming industry with long supply chain.The growth of paper product demand further intensifies the need of energy consumption.Energy saving through the full supply chain has become a focal point for long-term sustainable development of the papermaking industry.This paper reviews the advances in life cycle analysis for the papermaking industry in recent years.All the stages from the full supply chain are involved to give a panoramic overview of the papermaking industry.The object of this paper is to provide scientific basis to industry and decision-makers with profound understanding of the energy consumption and energy saving potential in a life cycle perspective.展开更多
本文应用生命周期评价法(LCA)对裙带菜栽培加工产业进行了全周期的碳足迹分析,明确了各环节中碳排放源的种类和数量。结果表明:裙带菜浮筏栽培加工阶段的碳排放总量为3.95×10^(5) kg CO_(2)e/百亩,高于百亩裙带菜栽培阶段形成的碳...本文应用生命周期评价法(LCA)对裙带菜栽培加工产业进行了全周期的碳足迹分析,明确了各环节中碳排放源的种类和数量。结果表明:裙带菜浮筏栽培加工阶段的碳排放总量为3.95×10^(5) kg CO_(2)e/百亩,高于百亩裙带菜栽培阶段形成的碳汇量,从全产业的尺度来看,裙带菜栽培加工产业尚不是一个碳汇产业。在裙带菜产业链中,首先为加工阶段的碳排放量最大,主要来自包装的大量使用;其次为存储阶段的碳排放,主要来自制冷设备的电耗;最后为栽培阶段的碳排放,主要来自柴油消耗。为了提升裙带菜产业的碳汇能力,建议通过改变能源形式、提高材料的使用寿命、选择低碳替代品等途径来降低裙带菜产业的碳排放量。展开更多
The integration of refinery and petrochemical units(IRPUs)has become an inevitable choice for the sustainable development of petrochemical industry.The utilization efficiency of petroleum resources could be improved o...The integration of refinery and petrochemical units(IRPUs)has become an inevitable choice for the sustainable development of petrochemical industry.The utilization efficiency of petroleum resources could be improved obviously through IRPUs.However,integrating economic and environmental impacts into the model of IRPUs is still a grand challenge.Herein,a model called TEA-GHG-OPWM(Techno-Economic Analysis and GreenHouse Gases Oriented Plant-Wide Model)has been established on Aspen HYSYSTM platform to calculate the energy consumption,the technoeconomic performance,and the GHG emissions for two different kinds of schemes,viz,:VRHCU(Vacuum Residue Hydrocracking Unit)and VRDS-RFCC(Vacuum Residue Desulfurization and Residue Fluid Catalytic Cracking).Furthermore,a novel processing pathway named VGOHDT-HTMP-DC(Vacuum Gas Oil Hydrotreating,Hydrogenation and TMP coupling process and Delayed Coking)has also been developed to find methods to improve the economic performance based on a ten-million-CNY output value(TMYOV)and a reduced GHG emissions.Our results demonstrate that VRHCRU could consume more energy and emit more GHG(877.11 t of CO2 eq·TMYOV^-1·h^-1)than VRDS-RFCC(817.03 t of CO2 eq·TMYOV^-1·h^-1)and VGOHDT-HTMP-DC(721.96 t of CO2 eq·TMYOV^-1·h^-1),while obtaining a higher mass yield of petrochemicals.The VGOHDT-HTMP-DC process exhibits the lowest feedstock consumption,hydrogen consumption,energy consumption,and GHG emissions,indicating that VGOHDT-HTMP-DC has both well economic and environmentally friendly performance.展开更多
Parabolic trough collectors (PTCs) are employed for a variety of applications including steam generation and hot water generation. This paper deals with the experimental results and an economic analysis of a new fib...Parabolic trough collectors (PTCs) are employed for a variety of applications including steam generation and hot water generation. This paper deals with the experimental results and an economic analysis of a new fibre reinforced plastic (FRP) based solar PTC with an embedded electronic controlled tracking system designed and developed for hot water generation in a restaurant in Madurai, India. The new collector performance has been tested according to ASHRAE Standard 93 (1986). The performance of a new PTC hot water generation system with a well mixed hot water storage tank is investigated by a series of extensive tests over ten months period. The average maximum storage tank water temperature observed was 74.91℃, when no energy is withdrawn from the tank to the load during the collection period. The total cost of the new economic FRP based solar PTC for hot water generation with an embedded electronic controlled tracking system is Rs. 25000 (US$ 573) only. In the present work, life cycle savings (LCS) method is employed for a detailed economic analysis of the PTC system. A computer program is used as a tool for the economic analysis. The present worth of life cycle solar savings is evaluated for the new solar PTC hot water generation system that replaces an existing electric water heating system in the restaurant and attains a value of Rs. 23171.66 after 15 years, which is a significant saving. The LCS method and the MATLAB computer simulation program presented in this paper can be used to estimate the LCS of other renewable energy systems.展开更多
为探讨废旧纺织品再生循环生命周期评价中常用生命周期末端(End of Life,EoL)分配方法的建模特征、适用性及优缺点,本文通过假设示例,对截断法、系统扩展法(直接系统扩大法)、经济分配法(中间点情形、联产品情形)、5050分配法和替代点...为探讨废旧纺织品再生循环生命周期评价中常用生命周期末端(End of Life,EoL)分配方法的建模特征、适用性及优缺点,本文通过假设示例,对截断法、系统扩展法(直接系统扩大法)、经济分配法(中间点情形、联产品情形)、5050分配法和替代点法进行示范建模计算。研究发现,EoL分配的关键在于科学划定系统边界以准确分摊跨生命周期的环境负担与环境收益;存在分配争议的共享模块主要包括原生过程、再生过程和废物管理过程的环境负荷。各EoL分配方法基本原理、建模规则各异,存在各自的优劣性与适用性,需结合具体目标与应用场景选择适用的方法。为推动纺织行业低碳转型,亟需构建多维度EoL分配方法评价体系,发展规范统一的回收建模分配方法。展开更多
基金supported by the National Natural Science Foundation of China(Nos.71671187,71874210,71633006)the Natural Science Foundation of Hunan Province,China(No.2024JJ6539)+1 种基金the National Social Science Fund of China(No.22&ZD098)the Social Sciences Fund of Hunan Province,China(No.24YBQ138)。
文摘From a life cycle perspective,the material flow analysis is utilized to investigate the lithium material flows in international trade from 2000 to 2019.The results reveal that at the global level,the total volume of lithium trade grew rapidly,reaching 121116 t in 2019.Lithium trade was dominated by lithium minerals,lithium carbonate and lithium hydroxide rather than final lithium products,indicating an immaturity in global lithium industry.At the intercontinental level,Asia’s import trade and Oceania’s export trade led the world,accounting for 81.22%and 39.68%,respectively.At the national level,China,Japan and Korea became the main importers,while Chile and Australia were the main exporters.In addition,China’s trade volume far exceeded that of the United States.China’s exports were dominated by lithium-ion batteries,while the United States mainly imported lithium-ion batteries,proving that the development of China’s lithium industry was relatively faster.
文摘The purpose of this paper is to identify the processes with the highest contribution to potential environmental impacts in the life cycle of the masonry of concrete blocks by evaluating their main emissions contributing to impact categories and identifying hotspots for environmental improvements.The research is based on the Life Cycle Assessment(LCA)study of non-load-bearing masonry of concrete blocks performed by the authors.The processes those have demonstrated higher contribution to environmental impacts were identified in the Life Cycle Impact Assessment(LCIA)phase and a detailed analysis was carried out on the main substances derived from these processes.The highest potential impacts in the life cycle of the concrete blocks masonry can be attributed mainly to emissions coming from the production of Portland cement,which explains the peak of impact potential on the blocks production stage,but also the significant impact potential in the use of the blocks for masonry construction,due to the use of cement mortar.The results of this LCA study are part of a major research on the comparative analysis of different typologies of non-load-bearing external walls,which aims to contribute to the creation of a life cycle database of major building systems,to be used by the environmental certification systems of buildings.
基金sponsored by the US Department of Energy Fossil Energy and Carbon Management Program,project FEAA157 under contract DE-AC05-00OR22725 with UTBattelle,LLC.
文摘Coal is a versatile energy resource and was a driver of the industrial revolution that transformed the economies of Europe and North America and the trajectory of civilization.In this work,a technoeconomic analysis was performed for a coal-to-carbonfiber manufacture process developed at the University of Kentucky’s Center for Applied Energy Research.According to this process,coal,with decant oil as the solvent,was converted to mesophase pitch via solvent extraction,and the mesophase pitch was subsequently converted to carbon fiber.The total cost to produce carbon fibers from coal and decant oil via the solvent extraction process was estimated to be$11.50/kg for 50,000-tow pitch carbon fiber with a production volume of 3750 MT/year.The estimated carbon fiber cost was significantly lower than the current commercially available PAN-based carbon fiber price($20–$30/kg).With decant oil recycling rates of 50%and 70%in the solvent extraction process,the manufacturing cost of carbon fiber was estimated to be$9.90/kg and$9.50/kg of carbon fiber,respectively.A cradle-to-gate energy assessment revealed that carbon fiber derived from coal exhibited an embodied energy of 510 MJ/kg,significantly lower than that of conventionally produced carbon fiber from PAN.This notable difference is primarily attributed to the substantially higher conversion rate of coal-based mesophase pitch fibers into carbon fiber,surpassing PAN fibers by 1.6 times.These findings indicate that using coal for carbon fiber production through solvent extraction methods could offer a more energy-efficient and cost-competitive alternative to the traditional PAN based approach.
基金financial support from the National Natural Science Foundation of China(Nos.52434006,52374151,and 51927808)。
文摘As mining activities expand deeper,deep high-temperature formations seriously threaten the future safe exploitation,while deep geothermal energy has great potential for development.Combining the formation cooling and geothermal mining in mines to establish a thermos-hydraulic coupling numerical model for fractured formation.The study investigates the formation heat transfer behaviour,heat recovery performance and thermal economic benefits influenced during the life cycle.The results show that the accumulation of cold energy during the cold storage phase induces a decline in formation temperature.The heat recovery phase is determined by the extent of the initial cold domain,which contracts inward from the edge and decelerates the heat recovery rate gradually.With groundwater velocity increases,the thermal regulation efficiency gradually increases,the production temperature decreases,while the effective radius and thermal power increase first and then decrease.The injected volume and temperature significantly affect,with higher injection temperatures slowing thermal recovery,and the thermal regulation efficiency is more sensitive to changes in formation permeability and thermal conductivity.The heat extraction performance is positively correlated with all factors.The levelized cost of electricity is estimated at 0.1203$/(kW·h)during the cold storage.During the heat recovery,annual profit is primarily driven by cooling benefits.
文摘Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.
文摘为了准确评估温拌再生融合技术的环境效益,基于生命周期法确定路面建设期间环境效益的边界范围,建立碳排放计算模型。通过现场调查及数据分析,运用模型分别计算温拌再生技术与热拌技术的能耗及温室气体排放。最终对比分析了温拌再生融合技术的节能减排效益。结果表明:温拌再生路面施工过程中,原材料生产能耗324.47 MJ,温室气体排放为19.65 kg CO_(2e),混合料拌和能耗为217.28 MJ,温室气体排放为18.15 kg CO_(2e)。与热拌技术相比,温拌再生融合技术在混合料拌和阶段能耗和温室气体排放都有减少,RAP掺量为40%时,温拌再生路面建设期能耗节约33.33%,CO_(2)排放降低20.11%。
基金The Science and Technology Project of Jiangsu Provincial Communications Department(No.7621000078)
文摘Pavement performance and economic efficiency are researched on the perpetual test pavement of Yijiang-Suzhou Express Highway in Jiangsu province, China. Test sections were continuously monitored. The conditions and developing laws of deflection, rutting and cracking are compared among the perpetual pavement with the rich binder layer (RBL), the perpetual pavement without the RBL, and the conventional semi-rigid asphalt pavement in the past eight years after opening for traffic. Economical evaluation is conducted via life cycle cost analysis (LCCA). Based on the performance comparison and LCCA analysis, sections with the RBL have good crack resistance, but they are not very satisfactory in the aspect of permanent deformation; the conventional semi-rigid asphalt pavement is the least economic one due to requiring more frequent maintenance. Research results show that the perpetual pavement without RBL is a more appropriate structure for the test site.
文摘Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments set sustainability targets and implement corresponding measures.Nevertheless,critics of the globalized system claim that a territorial administrative scale is better suited to address sustainability issues.Yet,at the subnational level,local authorities rarely apply a systemic environmental assessment to enhance their action plans.This paper employs a territorial life cycle assessment methodology to improve local environmental agri-food planning.The objective is to identify significant direct and indirect environmental hotspots,their origins,and formulate effective mitigation strategies.The methodology is applied to the administrative department of Finistere,a strategic agricultural region in North-Western France.Multiple environmental criteria including climate change,fossil resource scarcity,toxicity,and land use are modeled.The findings reveal that the primary environmental hotspots of the studied local food system arise from indirect sources,such as livestock feed or diesel consumption.Livestock reduction and organic farming conversion emerge as the most environmentally efficient strategies,resulting in a 25%decrease in the climate change indicator.However,the overall modeled impact reduction is insufficient following national objectives and remains limited for the land use indicator.These results highlight the innovative application of life cycle assessment led at a local level,offering insights for the further advancement of systematic and prospective local agri-food assessment.Additionally,they provide guidance for local authorities to enhance the sustainability of planning strategies.
基金Supported by the State Key Laboratory of Pulp and Paper Engineering(201830)the Research Fund Program of Guangdong Provincial Key Lab of Green Chemical Product Technology(GC201809)+1 种基金Fundamental Research Funds for the Central Universities(2017BQ023)the Science and Technology Project of Guangdong Province(2015B010110004,2015A010104004,2013B010406002)
文摘Papermaking industry is a high-energy-consuming industry with long supply chain.The growth of paper product demand further intensifies the need of energy consumption.Energy saving through the full supply chain has become a focal point for long-term sustainable development of the papermaking industry.This paper reviews the advances in life cycle analysis for the papermaking industry in recent years.All the stages from the full supply chain are involved to give a panoramic overview of the papermaking industry.The object of this paper is to provide scientific basis to industry and decision-makers with profound understanding of the energy consumption and energy saving potential in a life cycle perspective.
文摘本文应用生命周期评价法(LCA)对裙带菜栽培加工产业进行了全周期的碳足迹分析,明确了各环节中碳排放源的种类和数量。结果表明:裙带菜浮筏栽培加工阶段的碳排放总量为3.95×10^(5) kg CO_(2)e/百亩,高于百亩裙带菜栽培阶段形成的碳汇量,从全产业的尺度来看,裙带菜栽培加工产业尚不是一个碳汇产业。在裙带菜产业链中,首先为加工阶段的碳排放量最大,主要来自包装的大量使用;其次为存储阶段的碳排放,主要来自制冷设备的电耗;最后为栽培阶段的碳排放,主要来自柴油消耗。为了提升裙带菜产业的碳汇能力,建议通过改变能源形式、提高材料的使用寿命、选择低碳替代品等途径来降低裙带菜产业的碳排放量。
基金The research was supported by the National Natural Science Foundation of China(21978325 and 21776312)the Fundamental Research Funds for the Central Universities(20CX06073A,20CX06095A,and 20CX06096A).
文摘The integration of refinery and petrochemical units(IRPUs)has become an inevitable choice for the sustainable development of petrochemical industry.The utilization efficiency of petroleum resources could be improved obviously through IRPUs.However,integrating economic and environmental impacts into the model of IRPUs is still a grand challenge.Herein,a model called TEA-GHG-OPWM(Techno-Economic Analysis and GreenHouse Gases Oriented Plant-Wide Model)has been established on Aspen HYSYSTM platform to calculate the energy consumption,the technoeconomic performance,and the GHG emissions for two different kinds of schemes,viz,:VRHCU(Vacuum Residue Hydrocracking Unit)and VRDS-RFCC(Vacuum Residue Desulfurization and Residue Fluid Catalytic Cracking).Furthermore,a novel processing pathway named VGOHDT-HTMP-DC(Vacuum Gas Oil Hydrotreating,Hydrogenation and TMP coupling process and Delayed Coking)has also been developed to find methods to improve the economic performance based on a ten-million-CNY output value(TMYOV)and a reduced GHG emissions.Our results demonstrate that VRHCRU could consume more energy and emit more GHG(877.11 t of CO2 eq·TMYOV^-1·h^-1)than VRDS-RFCC(817.03 t of CO2 eq·TMYOV^-1·h^-1)and VGOHDT-HTMP-DC(721.96 t of CO2 eq·TMYOV^-1·h^-1),while obtaining a higher mass yield of petrochemicals.The VGOHDT-HTMP-DC process exhibits the lowest feedstock consumption,hydrogen consumption,energy consumption,and GHG emissions,indicating that VGOHDT-HTMP-DC has both well economic and environmentally friendly performance.
文摘Parabolic trough collectors (PTCs) are employed for a variety of applications including steam generation and hot water generation. This paper deals with the experimental results and an economic analysis of a new fibre reinforced plastic (FRP) based solar PTC with an embedded electronic controlled tracking system designed and developed for hot water generation in a restaurant in Madurai, India. The new collector performance has been tested according to ASHRAE Standard 93 (1986). The performance of a new PTC hot water generation system with a well mixed hot water storage tank is investigated by a series of extensive tests over ten months period. The average maximum storage tank water temperature observed was 74.91℃, when no energy is withdrawn from the tank to the load during the collection period. The total cost of the new economic FRP based solar PTC for hot water generation with an embedded electronic controlled tracking system is Rs. 25000 (US$ 573) only. In the present work, life cycle savings (LCS) method is employed for a detailed economic analysis of the PTC system. A computer program is used as a tool for the economic analysis. The present worth of life cycle solar savings is evaluated for the new solar PTC hot water generation system that replaces an existing electric water heating system in the restaurant and attains a value of Rs. 23171.66 after 15 years, which is a significant saving. The LCS method and the MATLAB computer simulation program presented in this paper can be used to estimate the LCS of other renewable energy systems.
文摘为探讨废旧纺织品再生循环生命周期评价中常用生命周期末端(End of Life,EoL)分配方法的建模特征、适用性及优缺点,本文通过假设示例,对截断法、系统扩展法(直接系统扩大法)、经济分配法(中间点情形、联产品情形)、5050分配法和替代点法进行示范建模计算。研究发现,EoL分配的关键在于科学划定系统边界以准确分摊跨生命周期的环境负担与环境收益;存在分配争议的共享模块主要包括原生过程、再生过程和废物管理过程的环境负荷。各EoL分配方法基本原理、建模规则各异,存在各自的优劣性与适用性,需结合具体目标与应用场景选择适用的方法。为推动纺织行业低碳转型,亟需构建多维度EoL分配方法评价体系,发展规范统一的回收建模分配方法。