期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Understanding many-body physics in one dimension from the Lieb–Liniger model 被引量:1
1
作者 姜玉铸 陈洋洋 管习文 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第5期16-31,共16页
This article presents an elementary introduction on various aspects of the prototypical integrable model the LiebLiniger Bose gas ranging from the cooperative to the collective features of many-body phenomena. In 1963... This article presents an elementary introduction on various aspects of the prototypical integrable model the LiebLiniger Bose gas ranging from the cooperative to the collective features of many-body phenomena. In 1963, Lieb and Liniger first solved this quantum field theory many-body problem using Bethe's hypothesis, i.e., a particular form of wavefunction introduced by Bethe in solving the one-dimensional Heisenberg model in 1931. Despite the Lieb-Liniger model is arguably the simplest exactly solvable model, it exhibits rich quantum many-body physics in terms of the aspects of mathematical integrability and physical universality. Moreover, the Yang-Yang grand canonical ensemble description for the model provides us with a deep understanding of quantum statistics, thermodynamics, and quantum critical phenomena at the many-body physical level. Recently, such fundamental physics of this exactly solved model has been attracting growing interest in experiments. Since 2004, there have been more than 20 experimental papers that rbported novel observations of different physical aspects of the Lieb--Liniger model in the laboratory. So far the observed results are in excellent agreement with results obtained using the analysis of this simplest exactly solved model. Those experimental observations reveal the unique beauty of integrability. 展开更多
关键词 many-body physics lieb-liniger model
原文传递
一维玻色气体中的量子临界性质
2
作者 陈洋洋 程颂 《新兴科学和技术趋势》 2023年第1期0070-0079,共10页
量子相变及其导致的临界现象是量子多体物理研究领域的重要课题。一维玻色气体(Lieb-Liniger 模型)由 于在理论上可以通过 Bethe Ansatz 方法严格求解,在实验上可以利用超冷原子气体实现,因此在理解量子临界性质 中发挥着重要的作用。... 量子相变及其导致的临界现象是量子多体物理研究领域的重要课题。一维玻色气体(Lieb-Liniger 模型)由 于在理论上可以通过 Bethe Ansatz 方法严格求解,在实验上可以利用超冷原子气体实现,因此在理解量子临界性质 中发挥着重要的作用。本文首先回顾了 Bethe Ansatz 方法,然后介绍了该模型的量子相变、普适性质以及如何在冷 原子气体中观测这些性质,最后展示了以该系统为工作物质的量子热机具有量子优越性。 展开更多
关键词 lieb-liniger 模型 Luttinger 液体 量子临界 量子热机
在线阅读 下载PDF
Theory of superfluidity and drag force in the one-dimensional Bose gas
3
作者 Alexander Yu. Cherny (1) Jean-Sébastien Caux (2) Joachim Brand (3) 《Frontiers of physics》 SCIE CSCD 2012年第1期54-71,共18页
The one-dimensional Bose gas is an unusual superfluid. In contrast to higher spatial dimensions, the existence of non-classical rotational inertia is not directly linked to the dissipationless motion of infinitesimal ... The one-dimensional Bose gas is an unusual superfluid. In contrast to higher spatial dimensions, the existence of non-classical rotational inertia is not directly linked to the dissipationless motion of infinitesimal impurities. Recently, experimental tests with ultracold atoms have begun and quanti- tative predictions for the drag force experienced by moving obstacles have become available. This topical review discusses the drag force obtained from linear response theory in relation to Lan- dau's criterion of superfluidity. Based upon improved analytical and numerical understanding of the dynamical structure factor, results for different obstacle potentials are obtained, including single impurities, optical lattices and random potentials generated from speckle patterns. The dynamical breakdown of superfluidity in random potentials is discussed in relation to Anderson localization and the predicted superfluid-insulator transition in these systems. 展开更多
关键词 lieb-liniger model Tonks-Girardeau gas Luttinger liquid drag force superfluidity dynamical structure factor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部