The dynamical Lie algebraic method is used for the description of statistical mechanics of rotationally inelastic molecule-surface scattering. It can give the time-evolution operators about the low power of and by s...The dynamical Lie algebraic method is used for the description of statistical mechanics of rotationally inelastic molecule-surface scattering. It can give the time-evolution operators about the low power of and by solving a set of coupled nonlinear differential equations. For considering the contribution of the high power of and , we use the Magnus formula. Thus, with the time-evolution operators we can get the statistical average values of the measurable quantities in terms of the density operator formalism in statistical mechanics. The method is applied to the scattering of (rigid rotor) by a flat, rigid surface to illustrate its general procedure. The results demonstrate that the method is useful for describing the statistical dynamics of gas-surface scattering.展开更多
In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–K...In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–Kupershmidt equation, etc. By means of the Lie group analysis method, the invariance properties and symmetry reductions of the equation are derived. Furthermore, by means of the power series theory, its exact power series solutions of the equation are also constructed. Finally, two kinds of conservation laws of the equation are well obtained with aid of the self-adjoint method.展开更多
This paper uses the Lie algebraic method to analyse the charged particle trajectories in the spherical electrostatic analyser, and obtains the nonlinear solutions. The results show that the focusing abilities both in ...This paper uses the Lie algebraic method to analyse the charged particle trajectories in the spherical electrostatic analyser, and obtains the nonlinear solutions. The results show that the focusing abilities both in the x and y directions of the analyser are almost the same. Moreover, there exist dispersion effects in the x direction, and no dispersion effects in the y direction.展开更多
Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is ...Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is used as an example to illustrate the effectiveness of the Lie group method and some classes of exact solutions are obtained.展开更多
In this paper, we propose a nearly analytic exponential time difference (NETD) method for solving the 2D acoustic and elastic wave equations. In this method, we use the nearly analytic discrete operator to approxima...In this paper, we propose a nearly analytic exponential time difference (NETD) method for solving the 2D acoustic and elastic wave equations. In this method, we use the nearly analytic discrete operator to approximate the high-order spatial differential operators and transform the seismic wave equations into semi-discrete ordinary differential equations (ODEs). Then, the converted ODE system is solved by the exponential time difference (ETD) method. We investigate the properties of NETD in detail, including the stability condition for 1-D and 2-D cases, the theoretical and relative errors, the numerical dispersion relation for the 2-D acoustic case, and the computational efficiency. In order to further validate the method, we apply it to simulating acoustic/elastic wave propagation in mul- tilayer models which have strong contrasts and complex heterogeneous media, e.g., the SEG model and the Mar- mousi model. From our theoretical analyses and numerical results, the NETD can suppress numerical dispersion effectively by using the displacement and gradient to approximate the high-order spatial derivatives. In addition, because NETD is based on the structure of the Lie group method which preserves the quantitative properties of differential equations, it can achieve more accurate results than the classical methods.展开更多
We use the Bethe ansatz method to investigate the Schrdinger equation for a class of PT-symmetric non-Hermitian Hamiltonians. Elementary exact solutions for the eigenvalues and the corresponding wave functions are obt...We use the Bethe ansatz method to investigate the Schrdinger equation for a class of PT-symmetric non-Hermitian Hamiltonians. Elementary exact solutions for the eigenvalues and the corresponding wave functions are obtained in terms of the roots of a set of algebraic equations. Also, it is shown that the problems possess sl(2) hidden symmetry and then the exact solutions of the problems are obtained by employing the representation theory of sl(2) Lie algebra. It is found that the results of the two methods are the same.展开更多
In this paper, the Lie symmetry analysis and generalized symmetry method are performed for a short-wave model. The symmetries for this equation are given, and the phase portraits of the traveling wave systems are anal...In this paper, the Lie symmetry analysis and generalized symmetry method are performed for a short-wave model. The symmetries for this equation are given, and the phase portraits of the traveling wave systems are analyzed using the bifurcation theory of dynamical systems. The exact parametric representations of four types of traveling wave solutions are obtained.展开更多
An analytical expression of the propagator is obtained by using Lie algebramethod.The fission rates at the saddle point in both constant and coordinate-dependentmass,friction and temperature cases are calculated based...An analytical expression of the propagator is obtained by using Lie algebramethod.The fission rates at the saddle point in both constant and coordinate-dependentmass,friction and temperature cases are calculated based on the expression of thepropagator and local approximation.The numerical calculation for <sup>240</sup>pu shows thatthe fission rates from our method are reasonable.展开更多
In this paper, the variable-coefficient diffusion-advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by deter...In this paper, the variable-coefficient diffusion-advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended (Gl/G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions.展开更多
In this paper, the dispersive long wave equation is studied by Lie symmetry group theory. Firstly, the Lie symmetries of this system are calculated. Secondly, one dimensional optimal systems of Lie algebra and all the...In this paper, the dispersive long wave equation is studied by Lie symmetry group theory. Firstly, the Lie symmetries of this system are calculated. Secondly, one dimensional optimal systems of Lie algebra and all the symmetry reductions are obtained. Finally, based on the power series method and the extended Tanh function method, some new explicit solutions of this system are constructed.展开更多
基金The project supported by Natural Science Foundation of Shandong Province of China+2 种基金National Natural Science Foundation of Chinathe Doctor Foundation of the Ministry of Education of China
文摘The dynamical Lie algebraic method is used for the description of statistical mechanics of rotationally inelastic molecule-surface scattering. It can give the time-evolution operators about the low power of and by solving a set of coupled nonlinear differential equations. For considering the contribution of the high power of and , we use the Magnus formula. Thus, with the time-evolution operators we can get the statistical average values of the measurable quantities in terms of the density operator formalism in statistical mechanics. The method is applied to the scattering of (rigid rotor) by a flat, rigid surface to illustrate its general procedure. The results demonstrate that the method is useful for describing the statistical dynamics of gas-surface scattering.
基金Supported by the Fundamental Research Funds for Key Discipline Construction under Grant No.XZD201602the Fundamental Research Funds for the Central Universities under Grant Nos.2015QNA53 and 2015XKQY14+2 种基金the Fundamental Research Funds for Postdoctoral at the Key Laboratory of Gas and Fire Control for Coal Minesthe General Financial Grant from the China Postdoctoral Science Foundation under Grant No.2015M570498Natural Sciences Foundation of China under Grant No.11301527
文摘In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–Kupershmidt equation, etc. By means of the Lie group analysis method, the invariance properties and symmetry reductions of the equation are derived. Furthermore, by means of the power series theory, its exact power series solutions of the equation are also constructed. Finally, two kinds of conservation laws of the equation are well obtained with aid of the self-adjoint method.
基金Project supported by the National Natural Science Foundation of China (Grant No 1057009).
文摘This paper uses the Lie algebraic method to analyse the charged particle trajectories in the spherical electrostatic analyser, and obtains the nonlinear solutions. The results show that the focusing abilities both in the x and y directions of the analyser are almost the same. Moreover, there exist dispersion effects in the x direction, and no dispersion effects in the y direction.
文摘Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is used as an example to illustrate the effectiveness of the Lie group method and some classes of exact solutions are obtained.
基金supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates(201410290039)the Fundamental Research Funds for the Central Universities(2015QNA53,2015XKQY14)+1 种基金the General Financial Grant from the China Postdoctoral Science Foundations(2015M570498 and 2017T100413)Natural Sciences Foundation of China(11301527)
文摘In this paper, we propose a nearly analytic exponential time difference (NETD) method for solving the 2D acoustic and elastic wave equations. In this method, we use the nearly analytic discrete operator to approximate the high-order spatial differential operators and transform the seismic wave equations into semi-discrete ordinary differential equations (ODEs). Then, the converted ODE system is solved by the exponential time difference (ETD) method. We investigate the properties of NETD in detail, including the stability condition for 1-D and 2-D cases, the theoretical and relative errors, the numerical dispersion relation for the 2-D acoustic case, and the computational efficiency. In order to further validate the method, we apply it to simulating acoustic/elastic wave propagation in mul- tilayer models which have strong contrasts and complex heterogeneous media, e.g., the SEG model and the Mar- mousi model. From our theoretical analyses and numerical results, the NETD can suppress numerical dispersion effectively by using the displacement and gradient to approximate the high-order spatial derivatives. In addition, because NETD is based on the structure of the Lie group method which preserves the quantitative properties of differential equations, it can achieve more accurate results than the classical methods.
文摘We use the Bethe ansatz method to investigate the Schrdinger equation for a class of PT-symmetric non-Hermitian Hamiltonians. Elementary exact solutions for the eigenvalues and the corresponding wave functions are obtained in terms of the roots of a set of algebraic equations. Also, it is shown that the problems possess sl(2) hidden symmetry and then the exact solutions of the problems are obtained by employing the representation theory of sl(2) Lie algebra. It is found that the results of the two methods are the same.
基金Project supported by the Foundation of Guangxi Key Laboratory of Trusted Software, the Guangxi Natural Science Foundation, China (Grant No. 2011GXNSFA018134)the National Natural Science Foundation of China (Grant Nos. 11161013 and 61004101)
文摘In this paper, the Lie symmetry analysis and generalized symmetry method are performed for a short-wave model. The symmetries for this equation are given, and the phase portraits of the traveling wave systems are analyzed using the bifurcation theory of dynamical systems. The exact parametric representations of four types of traveling wave solutions are obtained.
文摘An analytical expression of the propagator is obtained by using Lie algebramethod.The fission rates at the saddle point in both constant and coordinate-dependentmass,friction and temperature cases are calculated based on the expression of thepropagator and local approximation.The numerical calculation for <sup>240</sup>pu shows thatthe fission rates from our method are reasonable.
文摘In this paper, the variable-coefficient diffusion-advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended (Gl/G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions.
文摘In this paper, the dispersive long wave equation is studied by Lie symmetry group theory. Firstly, the Lie symmetries of this system are calculated. Secondly, one dimensional optimal systems of Lie algebra and all the symmetry reductions are obtained. Finally, based on the power series method and the extended Tanh function method, some new explicit solutions of this system are constructed.