期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
基于Libra R-CNN方法的高铁接触网腕臂管帽检测 被引量:2
1
作者 李星驰 冯林佳 +1 位作者 顾亮 王振宇 《新技术新工艺》 2020年第9期72-76,共5页
由于列车长期高速运行,接触网腕臂会发生管帽脱落的现象。没有管帽的保护,腕臂容易进入杂物,从而引起腕臂的锈蚀、结构失稳等问题,影响铁路的安全运行。目前,铁路局主要采用图像监测结合人工查看的方法检查管帽脱落与否。该方法不仅效... 由于列车长期高速运行,接触网腕臂会发生管帽脱落的现象。没有管帽的保护,腕臂容易进入杂物,从而引起腕臂的锈蚀、结构失稳等问题,影响铁路的安全运行。目前,铁路局主要采用图像监测结合人工查看的方法检查管帽脱落与否。该方法不仅效率较低,而且工作量巨大。针对管帽对象较小、管帽样本不均衡和管帽数据集较小等问题,依据计算机视觉理论,使用基于目标检测模型的方法,并结合迁移学习技术,进行管帽脱落的识别,可以显著提高管帽脱落的检测效率。通过试验调整R-CNN架构的结构,选择合适的预训练模型,改变主干网络的训练模式,选择最优的检测模型。最终,结合COCO预训练模型的Libra R-CNN方法在测试集上取得最好的效果,mAP@0.7达到了98.2%,具有实际工程意义和应用前景。 展开更多
关键词 高铁接触网 腕臂管帽 缺陷检测 libra r-cnn 注意力机制 迁移学习
在线阅读 下载PDF
改进的Libra区域卷积神经网络的脑动脉狭窄影像学检测算法 被引量:1
2
作者 刘汉卿 康晓东 +4 位作者 张福青 赵秀圆 杨靖怡 王笑天 李梦凡 《计算机应用》 CSCD 北大核心 2022年第9期2909-2916,共8页
针对断层面上血管的多形性和检测过程中出现的采样不均衡的问题,提出一种改进的Libra区域卷积神经网络(R-CNN)的脑动脉狭窄影像学检测算法,用于检测计算机断层扫描血管造影(CTA)图像的颈内动脉和椎动脉狭窄。首先,在目标检测网络LibraR-... 针对断层面上血管的多形性和检测过程中出现的采样不均衡的问题,提出一种改进的Libra区域卷积神经网络(R-CNN)的脑动脉狭窄影像学检测算法,用于检测计算机断层扫描血管造影(CTA)图像的颈内动脉和椎动脉狭窄。首先,在目标检测网络LibraR-CNN中以ResNet50为骨干网络,并分别在骨干网络的3、4、5阶段引入可变卷积网络(DCN),通过学习偏移量提取血管在不同断层面的形态特征;然后,将从骨干网络中提取的特征图输入至引入非局部神经网络(Non-localNN)的平衡特征金字塔(BFP)中进行更深度的特征融合;最后,将融合后的特征图输入至级联检测器,并通过提高交并比(IoU)阈值优化最终检测结果。实验结果表明,改进的LibraR-CNN检测算法相比Libra R-CNN算法,在脑动脉CTA数据集中平均准确率(AP)、AP_(50)、AP_(75)和AP_(S)分别提升了4.3、1.3、6.9和4.0个百分点;在公开的结肠息肉CT数据集中,AP、AP_(50)、AP_(75)和AP_(S)分别提升了6.6、3.6、13.0和6.4个百分点。通过在LibraR-CNN的骨干网络中加入DCN、Non-localNN和级联检测器,进一步融合特征从而学习脑动脉血管结构的语义信息,使得狭窄区域检测结果更精确,且改进算法在不同的检测任务中具有泛化能力。 展开更多
关键词 libra区域卷积神经网络 可变卷积网络 非局部神经网络 级联检测器 脑动脉狭窄
在线阅读 下载PDF
Detection of ocean internal waves based on Faster R-CNN in SAR images 被引量:11
3
作者 BAO Sude MENG Junmin +1 位作者 SUN Lina LIU Yongxin 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第1期55-63,共9页
Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular rese... Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular research topic.In this paper,ocean internal waves are detected in SAR images by employing the faster regions with convolutional neural network features(Faster R-CNN)framework;for this purpose,888 internal wave samples are utilized to train the convolutional network and identify internal waves.The experimental results demonstrate a 94.78%recognition rate for internal waves,and the average detection speed is 0.22 s/image.In addition,the detection results of internal wave samples under different conditions are analyzed.This paper lays a foundation for detecting ocean internal waves using convolutional neural networks. 展开更多
关键词 ocean internal waves FASTER regions with convolutional NEURAL network features (Faster r-cnn) convolutional NEURAL network synthetic APERTURE radar (SAR) image region proposal network (RPN)
在线阅读 下载PDF
Localization and Classification of Rice-grain Images Using Region Proposals-based Convolutional Neural Network 被引量:13
4
作者 Kittinun Aukkapinyo Suchakree Sawangwong +1 位作者 Parintorn Pooyoi Worapan Kusakunniran 《International Journal of Automation and computing》 EI CSCD 2020年第2期233-246,共14页
This paper proposes a solution to localization and classification of rice grains in an image.All existing related works rely on conventional based machine learning approaches.However,those techniques do not do well fo... This paper proposes a solution to localization and classification of rice grains in an image.All existing related works rely on conventional based machine learning approaches.However,those techniques do not do well for the problem designed in this paper,due to the high similarities between different types of rice grains.The deep learning based solution is developed in the proposed solution.It contains pre-processing steps of data annotation using the watershed algorithm,auto-alignment using the major axis orientation,and image enhancement using the contrast-limited adaptive histogram equalization(CLAHE)technique.Then,the mask region-based convolutional neural networks(R-CNN)is trained to localize and classify rice grains in an input image.The performance is enhanced by using the transfer learning and the dropout regularization for overfitting prevention.The proposed method is validated using many scenarios of experiments,reported in the forms of mean average precision(mAP)and a confusion matrix.It achieves above 80%mAP for main scenarios in the experiments.It is also shown to perform outstanding,when compared to human experts. 展开更多
关键词 MASK region-based convolutional neural networks(r-cnn) computer VISION deep LEARNING RICE GRAIN classification transfer LEARNING
原文传递
Mask R-CNN and multifeature clustering model for catenary insulator recognition and defect detection 被引量:11
5
作者 Ping TAN Xu-feng LI +5 位作者 Jin DING Zhi-sheng CUI Ji-en MA Yue-lan SUN Bing-qiang HUANG You-tong FANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第9期745-756,共12页
Rod insulators are vital parts of the catenary of high speed railways(HSRs).There are many different catenary insulators,and the background of the insulator image is complicated.It is difficult to recognise insulators... Rod insulators are vital parts of the catenary of high speed railways(HSRs).There are many different catenary insulators,and the background of the insulator image is complicated.It is difficult to recognise insulators and detect defects automatically.In this paper,we propose a catenary intelligent defect detection algorithm based on Mask region-convolutional neural network(R-CNN)and an image processing model.Vertical projection technology is used to achieve single shed positioning and precise cutting of the insulator.Gradient,texture,and gray feature fusion(GTGFF)and a K-means clustering analysis model(KCAM)are proposed to detect broken insulators,dirt,foreign bodies,and flashover.Using this model,insulator recognition and defect detection can achieve a high recall rate and accuracy,and generalized defect detection.The algorithm is tested and verified on a dataset of realistic insulator images,and the accuracy and reliability of the algorithm satisfy current requirements for HSR catenary automatic inspection and intelligent maintenance. 展开更多
关键词 High speed railway(HSR)catenary insulator Mask region-convolutional neural network(r-cnn) Multifeature fusion K-means clustering analysis model(KCAM) Defect detection
原文传递
基于改进Libra-RCNN的输电线路绝缘子识别 被引量:4
6
作者 闾海庆 雷远华 +2 位作者 王静 邢学敏 杨静 《湖南电力》 2022年第2期44-49,共6页
针对无人机航拍输电线路识别绝缘子的定位精度和稳定性较差等问题,提出一种基于ASFF金字塔网络的Libra-RCNN绝缘子检测模型。首先,使用FRN归一化层替代原BN层,消除归一化层对训练批次大小依赖,增加模型学习效率;然后在Libra-RCNN算法金... 针对无人机航拍输电线路识别绝缘子的定位精度和稳定性较差等问题,提出一种基于ASFF金字塔网络的Libra-RCNN绝缘子检测模型。首先,使用FRN归一化层替代原BN层,消除归一化层对训练批次大小依赖,增加模型学习效率;然后在Libra-RCNN算法金字塔中引入ASFF网络结构,有效解决特征金字塔内部不一致问题;最后借助GIoU交并比替代原IoU交并比,更好精确绝缘子位置。在Insulators_Datasets绝缘子数据集中,改进Libra-RCNN模型平均准确率达94.10%,召回率达97.51%;相较原Libra-RCNN模型分别提高2.23%、2.61%,表明所提算法能稳定、有效地识别绝缘子。 展开更多
关键词 绝缘子检测 libra-RCNN模型 FRN归一化层 ASFF网络 GIoU交并比
在线阅读 下载PDF
Road Damage Detection and Classification Using Mask R-CNN with DenseNet Backbone 被引量:3
7
作者 Qiqiang Chen Xinxin Gan +2 位作者 Wei Huang Jingjing Feng H.Shim 《Computers, Materials & Continua》 SCIE EI 2020年第12期2201-2215,共15页
Automatic road damage detection using image processing is an important aspect of road maintenance.It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images.... Automatic road damage detection using image processing is an important aspect of road maintenance.It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images.In recent years,deep convolutional neural network based methods have been used to address the challenges of road damage detection and classification.In this paper,we propose a new approach to address those challenges.This approach uses densely connected convolution networks as the backbone of the Mask R-CNN to effectively extract image feature,a feature pyramid network for combining multiple scales features,a region proposal network to generate the road damage region,and a fully convolutional neural network to classify the road damage region and refine the region bounding box.This method can not only detect and classify the road damage,but also create a mask of the road damage.Experimental results show that the proposed approach can achieve better results compared with other existing methods. 展开更多
关键词 Road damage detection road damage classification Mask r-cnn framework densely connected network
在线阅读 下载PDF
Small objects detection in UAV aerial images based on improved Faster R-CNN 被引量:8
8
作者 WANG Ji-wu LUO Hai-bao +1 位作者 YU Peng-fei LI Chen-yang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期11-16,共6页
In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convo... In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convolutional neural network(Faster R-CNN)is proposed.The bird’s nest on the high-voltage tower is taken as the research object.Firstly,we use the improved convolutional neural network ResNet101 to extract object features,and then use multi-scale sliding windows to obtain the object region proposals on the convolution feature maps with different resolutions.Finally,a deconvolution operation is added to further enhance the selected feature map with higher resolution,and then it taken as a feature mapping layer of the region proposals passing to the object detection sub-network.The detection results of the bird’s nest in UAV aerial images show that the proposed method can precisely detect small objects in aerial images. 展开更多
关键词 Faster region-based convolutional neural network(Faster r-cnn) ResNet101 unmanned aerial vehicle(UAV) small objects detection bird’s nest
在线阅读 下载PDF
Object detection of artifact threaded hole based on Faster R-CNN 被引量:2
9
作者 ZHANG Zhengkai QI Lang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第1期107-114,共8页
In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based ... In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based on Faster region-ased convolutional neural network(Faster R-CNN).First,a dual camera image acquisition system is established.One industrial camera placed at a high position is responsible for collecting the whole image of the workpiece,and the suspected screw hole position on the workpiece can be preliminarily selected by Hough transform detection algorithm.Then,the other industrial camera is responsible for collecting the local images of the suspected screw holes that have been detected by Hough transform one by one.After that,ResNet50-based Faster R-CNN object detection model is trained on the self-built screw hole data set.Finally,the local image of the threaded hole is input into the trained Faster R-CNN object detection model for further identification and location.The experimental results show that the proposed method can effectively avoid small object detection of threaded holes,and compared with the method that only uses Hough transform or Faster RCNN object detection alone,it has high recognition and positioning accuracy. 展开更多
关键词 object detection threaded hole deep learning region-based convolutional neural network(Faster r-cnn) Hough transform
在线阅读 下载PDF
Diagnosis of Middle Ear Diseases Based on Convolutional Neural Network
10
作者 Yunyoung Nam Seong Jun Choi +1 位作者 Jihwan Shin Jinseok Lee 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1521-1532,共12页
An otoscope is traditionally used to examine the eardrum and ear canal.A diagnosis of otitis media(OM)relies on the experience of clinicians.If an examiner lacks experience,the examination may be difficult and time-co... An otoscope is traditionally used to examine the eardrum and ear canal.A diagnosis of otitis media(OM)relies on the experience of clinicians.If an examiner lacks experience,the examination may be difficult and time-consuming.This paper presents an ear disease classification method using middle ear images based on a convolutional neural network(CNN).Especially the segmentation and classification networks are used to classify an otoscopic image into six classes:normal,acute otitis media(AOM),otitis media with effusion(OME),chronic otitis media(COM),congenital cholesteatoma(CC)and traumatic perforations(TMPs).The Mask R-CNN is utilized for the segmentation network to extract the region of interest(ROI)from otoscopic images.The extracted ROIs are used as guiding features for the classification.The classification is based on transfer learning with an ensemble of two CNN classifiers:EfficientNetB0 and Inception-V3.The proposed model was trained with a 5-fold cross-validation technique.The proposed method was evaluated and achieved a classification accuracy of 97.29%. 展开更多
关键词 Otitis media convolutional neural network acute otitis media otitis media with effusion chronic otitis media congenital cholesteatoma traumatic perforation Mask r-cnn
在线阅读 下载PDF
Advanced classification of drill core rock type and weathering grade using detection transformer-based artificial intelligence techniques
11
作者 Keith Ki Chun Tse Louis Ngai Yuen Wong +1 位作者 Sai Hung Cheung Lequan Yu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4036-4045,共10页
Rock classification plays a crucial role in various fields such as geology,engineering,and environmental studies.Employing deep learning AI(artificial intelligence)methods has a high potential to significantly improve... Rock classification plays a crucial role in various fields such as geology,engineering,and environmental studies.Employing deep learning AI(artificial intelligence)methods has a high potential to significantly improve the accuracy and efficiency of this task.The paper delves into the exploration of two cuttingedge AI techniques,namely Mask DINO and Mask R-CNN(convolutional neural network),as means to identify rock weathering grades and rock types.The results demonstrate that Mask DINO,which is a Detection Transformer(DETR),outperforms Mask R-CNN for the aforementioned purposes.Mask DINO achieved f-1 scores of 91% and 86% in weathering grade detection and rock type detection,as opposed to the Mask R-CNN's f-1 scores of 84% and 75%,respectively.These findings underscore the substantial potential of employing DETR algorithms like Mask DINO for automatic classification of both rock type and weathering states.Although the study examines only two AI models,the data processing and other techniques developed in this study may serve as a foundation for future advancements in the field.By incorporating these advanced AI techniques,logging personnel can obtain valuable references to aid their work,ultimately contributing to the advancement of geological and related fields. 展开更多
关键词 Mask r-cnn(convolutional neural network) Detection transformer LITHOLOGY WEATHERING Artificial intelligence(AI)
在线阅读 下载PDF
An intelligent detection method for directional bolt hole objects of shield tunnel lining structures
12
作者 Yiding Ma Dechun Lu +3 位作者 Fanchao Kong Tao Tian Dongmei Zhang Xiuli Du 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第12期7555-7569,共15页
Most image-based object detection methods employ horizontal bounding boxes(HBBs)to capture objects in tunnel images.However,these bounding boxes often fail to effectively enclose objects oriented in arbitrary directio... Most image-based object detection methods employ horizontal bounding boxes(HBBs)to capture objects in tunnel images.However,these bounding boxes often fail to effectively enclose objects oriented in arbitrary directions,resulting in reduced accuracy and suboptimal detection performance.Moreover,HBBs cannot provide directional information for rotated objects.This study proposes a rotated detection method for identifying apparent defects in shield tunnels.Specifically,the oriented region-convolutional neural network(oriented R-CNN)is utilized to detect rotated objects in tunnel images.To enhance feature extraction,a novel hybrid backbone combining CNN-based networks with Swin Transformers is proposed.A feature fusion strategy is employed to integrate features extracted from both networks.Additionally,a neck network based on the bidirectional-feature pyramid network(Bi-FPN)is designed to combine multi-scale object features.The bolt hole dataset is curated to evaluate the efficacyof the proposed method.In addition,a dedicated pre-processing approach is developed for large-sized images to accommodate the rotated,dense,and small-scale characteristics of objects in tunnel images.Experimental results demonstrate that the proposed method achieves a more than 4%improvement in mAP_(50-95)compared to other rotated detectors and a 6.6%-12.7%improvement over mainstream horizontal detectors.Furthermore,the proposed method outperforms mainstream methods by 6.5%-14.7%in detecting leakage bolt holes,underscoring its significant engineering applicability. 展开更多
关键词 Apparent defects of shield tunnels Rotated object detection Swin transformer Oriented region-convolutional neural network(oriented r-cnn)
在线阅读 下载PDF
可远程自校准的分布式组网无线微振动测试仪研制
13
作者 陈晋央 余尚江 +1 位作者 郭青林 杜建国 《振动与冲击》 EI CSCD 北大核心 2017年第12期196-200,242,共6页
为满足文化遗产地的微振动环境监测需求,设计了可远程自校准的分布式组网无线微振动测试仪。通过测试仪硬件电路、固件程序、封装结构的合理设计,以及测试仪的校准试验和在敦煌莫高窟的现场试验,验证了设计的无线微振动测试仪具有无线... 为满足文化遗产地的微振动环境监测需求,设计了可远程自校准的分布式组网无线微振动测试仪。通过测试仪硬件电路、固件程序、封装结构的合理设计,以及测试仪的校准试验和在敦煌莫高窟的现场试验,验证了设计的无线微振动测试仪具有无线分布式组网、集成度高、远程自校准、同步采样、自动定位、灵敏度高等特点,能够满足世界文化遗产地对微振动环境的长期大范围监测需求。该测试仪已经在敦煌莫高窟的风险预警系统中使用。 展开更多
关键词 敦煌莫高窟 微振动监测 无线组网 远程自校准
在线阅读 下载PDF
复杂场景下深度表示的SAR船舶目标检测算法 被引量:4
14
作者 袁国文 张彩霞 +2 位作者 杨阳 张文生 白江波 《计算机工程与应用》 CSCD 北大核心 2022年第2期289-294,共6页
雷达图像目标检测是国家海洋军事和经济发展的重点研究领域。与被动成像的光学雷达相比,合成孔径雷达(synthetic aperture radar,SAR)由于其高分辨率、全天候、全天时、主动式等特点,成为20世纪以来多国雷达研究的重要组成部分。图像目... 雷达图像目标检测是国家海洋军事和经济发展的重点研究领域。与被动成像的光学雷达相比,合成孔径雷达(synthetic aperture radar,SAR)由于其高分辨率、全天候、全天时、主动式等特点,成为20世纪以来多国雷达研究的重要组成部分。图像目标检测是雷达图像解译的基础。提出一种复杂场景下深度表示的SAR船舶目标检测算法,针对SAR图像目标检测模型无法专注困难样本以及解决FPN多尺度金字塔融合的问题,提出将Libra R-CNN网络与NAS-FPN特征提取网络相结合。其中Libra R-CNN网络在采样、特征、目标三种水平分别具有先进的IoU平衡采样、平衡特征金字塔、平衡L1损失方法,同时将Libra R-CNN模型中的FPN特征提取网络替换为在COCO数据集中借助神经架构搜索(neural architecture search,NAS)方法形成的7层NAS-FPN网络。模型最终在SAR船舶数据集中进行了对比实验,与原先的NAS-FPN网络相比,组合后的网络平均精度提高了4.4个百分点,证明了模型融合后的有效性。 展开更多
关键词 合成孔径雷达(SAR)图像 目标检测 libra r-cnn网络 NAS-FPN网络
在线阅读 下载PDF
浅析如何解决图书馆的网络安全管理问题 被引量:1
15
作者 罗刚 《邵阳学院学报(社会科学版)》 2008年第3期183-185,共3页
文章阐述了在互联网下数字图书馆的信息安全问题,并给出了相应的安全防范措施。
关键词 数字图书馆 网络安全 防火墙 计算机病毒
在线阅读 下载PDF
基于Libra R-CNN改进的交通标志检测算法 被引量:6
16
作者 赵子婧 刘宏哲 曹东璞 《机械工程学报》 EI CAS CSCD 北大核心 2021年第22期255-265,共11页
随着人工智能领域的快速发展,深度学习在无人驾驶领域中的应用逐渐成熟,但是其中交通标志检测任务作为难点问题仍有很大的改进空间。城市道路下的交通标志检测具有环境复杂、小目标多、目标种类多且数量不平衡的特点,针对这些问题,提出... 随着人工智能领域的快速发展,深度学习在无人驾驶领域中的应用逐渐成熟,但是其中交通标志检测任务作为难点问题仍有很大的改进空间。城市道路下的交通标志检测具有环境复杂、小目标多、目标种类多且数量不平衡的特点,针对这些问题,提出基于Libra R-CNN进行改进的方案。Libra R-CNN目标检测网络是基于平衡提出的,能够较好应对目标种类多及数量不平衡问题,在Libra R-CNN网络的锚框提取样本阶段,使用GA-RPN生成锚框,从而在训练期间产生更精确、更多样化的样本,减少背景影响和小目标不好定位的问题,提高检测准确率。该方法通过试验验证了有效性。试验是在MS COCO 2017和交通标志数据集上进行的。改进后的Libra R-CNN的m AP提高了超2.7个百分点。试验结果表明,改进后的网络相比原有的目标检测网络性能有了显著提升。 展开更多
关键词 计算机视觉 深度学习 目标检测 交通标志检测 改进的libra r-cnn GA-RPN
原文传递
Leguminous seeds detection based on convolutional neural networks:Comparison of Faster R-CNN and YOLOv4 on a small custom dataset 被引量:2
17
作者 Noran S.Ouf 《Artificial Intelligence in Agriculture》 2023年第2期30-45,共16页
This paper help with leguminous seeds detection and smart farming. There are hundreds of kinds of seeds and itcan be very difficult to distinguish between them. Botanists and those who study plants, however, can ident... This paper help with leguminous seeds detection and smart farming. There are hundreds of kinds of seeds and itcan be very difficult to distinguish between them. Botanists and those who study plants, however, can identifythe type of seed at a glance. As far as we know, this is the first work to consider leguminous seeds images withdifferent backgrounds and different sizes and crowding. Machine learning is used to automatically classify andlocate 11 different seed types. We chose Leguminous seeds from 11 types to be the objects of this study. Thosetypes are of different colors, sizes, and shapes to add variety and complexity to our research. The images datasetof the leguminous seeds was manually collected, annotated, and then split randomly into three sub-datasetstrain, validation, and test (predictions), with a ratio of 80%, 10%, and 10% respectively. The images consideredthe variability between different leguminous seed types. The images were captured on five different backgrounds: white A4 paper, black pad, dark blue pad, dark green pad, and green pad. Different heights and shootingangles were considered. The crowdedness of the seeds also varied randomly between 1 and 50 seeds per image.Different combinations and arrangements between the 11 types were considered. Two different image-capturingdevices were used: a SAMSUNG smartphone camera and a Canon digital camera. A total of 828 images wereobtained, including 9801 seed objects (labels). The dataset contained images of different backgrounds, heights,angles, crowdedness, arrangements, and combinations. The TensorFlow framework was used to construct theFaster Region-based Convolutional Neural Network (R-CNN) model and CSPDarknet53 is used as the backbonefor YOLOv4 based on DenseNet designed to connect layers in convolutional neural. Using the transfer learningmethod, we optimized the seed detection models. The currently dominant object detection methods, Faster RCNN, and YOLOv4 performances were compared experimentally. The mAP (mean average precision) of the FasterR-CNN and YOLOv4 models were 84.56% and 98.52% respectively. YOLOv4 had a significant advantage in detection speed over Faster R-CNN which makes it suitable for real-time identification as well where high accuracy andlow false positives are needed. The results showed that YOLOv4 had better accuracy, and detection ability, as wellas faster detection speed beating Faster R-CNN by a large margin. The model can be effectively applied under avariety of backgrounds, image sizes, seed sizes, shooting angles, and shooting heights, as well as different levelsof seed crowding. It constitutes an effective and efficient method for detecting different leguminous seeds incomplex scenarios. This study provides a reference for further seed testing and enumeration applications. 展开更多
关键词 Machine learning Object detection Leguminous seeds Deep learning Convolutional neural networks Faster r-cnn YOLOv4
原文传递
A Deep Learning Model of Traffic Signs in Panoramic Images Detection
18
作者 Kha Tu Huynh Thi Phuong Linh Le +1 位作者 Muhammad Arif Thien Khai Tran 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期401-418,共18页
To pursue the ideal of a safe high-tech society in a time when traffic accidents are frequent,the traffic signs detection system has become one of the necessary topics in recent years and in the future.The ultimate go... To pursue the ideal of a safe high-tech society in a time when traffic accidents are frequent,the traffic signs detection system has become one of the necessary topics in recent years and in the future.The ultimate goal of this research is to identify and classify the types of traffic signs in a panoramic image.To accomplish this goal,the paper proposes a new model for traffic sign detection based on the Convolutional Neural Network for com-prehensive traffic sign classification and Mask Region-based Convolutional Neural Networks(R-CNN)implementation for identifying and extracting signs in panoramic images.Data augmentation and normalization of the images are also applied to assist in classifying better even if old traffic signs are degraded,and considerably minimize the rates of discovering the extra boxes.The proposed model is tested on both the testing dataset and the actual images and gets 94.5%of the correct signs recognition rate,the classification rate of those signs discovered was 99.41%and the rate of false signs was only around 0.11. 展开更多
关键词 Deep learning convolutional neural network Mask r-cnn traffic signs detection
在线阅读 下载PDF
基于指导锚框平衡检测模型的录播课堂行为分析研究
19
作者 张冰雪 刘树潜 +1 位作者 熊振海 侯龙锋 《软件》 2020年第12期45-50,66,共7页
该论文将深度学习中目标检测技术结合教室实际场景,对录播课堂中教师以及学生进行行为检测识别,方便后续结合教学模型了解课堂质量。实验融合了Libra R-CNN中的平衡金字塔结构与GA-RPN中的指导生成锚框,在锚框与目标框的回归时均使用平... 该论文将深度学习中目标检测技术结合教室实际场景,对录播课堂中教师以及学生进行行为检测识别,方便后续结合教学模型了解课堂质量。实验融合了Libra R-CNN中的平衡金字塔结构与GA-RPN中的指导生成锚框,在锚框与目标框的回归时均使用平衡L1损失函数以降低相似背景等噪声数据的梯度影响,使得模型对复杂场景有更好的检测效果。根据教师场景与学生场景的不同特征,通过对比主流检测框架在各自场景下的检测效果,综合其检测速度,得出针对教师这种较为单一场景,使用ResNet50作为主干网络的SSD检测模型在保证精准度的同时速度最快;针对学生听课场景,使用该实验设计的GaB R-CNN+ResNeXt101检测效果最好,AP达到了80.9%。 展开更多
关键词 教学行为分析 libra r-cnn 指导锚框 均衡L1损失函数 GaB r-cnn
在线阅读 下载PDF
21世纪信息网络的发展与现代图书馆
20
作者 周剑英 《江西公安专科学校学报》 2002年第5期94-96,共3页
21世纪图书馆在向以数字化为特征的现代图书馆的发展过程中,由于自身的技术环境同以往有较大区别,其信息服务较传统图书馆在文献信息资源、服务对象和方式、服务手段等方面都有较大变革。由于传统图书馆信息服务对读者产生的多元制约,2... 21世纪图书馆在向以数字化为特征的现代图书馆的发展过程中,由于自身的技术环境同以往有较大区别,其信息服务较传统图书馆在文献信息资源、服务对象和方式、服务手段等方面都有较大变革。由于传统图书馆信息服务对读者产生的多元制约,21世纪信息网络的发展促进了图书馆工作的变革并对图书馆员的综合素质提出了挑战。 展开更多
关键词 信息网络 图书馆 多元制约 馆员素质
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部