The efficacy of spacecraft propulsion systems significantly depends on the choice of propellant.This study utilized laser-induced breakdown spectroscopy(LIBS)to investigate the impact of different fuel types,fuel rati...The efficacy of spacecraft propulsion systems significantly depends on the choice of propellant.This study utilized laser-induced breakdown spectroscopy(LIBS)to investigate the impact of different fuel types,fuel ratios,and laser energies on the plasma parameters of ammonium dinitramide(ADN)-based liquid propellants.Our findings suggest that 1-allyl-3-methylimidazolium dicyanamide(AMIMDCA)as a fuel choice led to higher plasma temperatures compared to methanol(CH_3OH)and hydroxyethyl hydrazine nitrate(HEHN)under the same experimental conditions.Optimization of the fuel ratio proved critical,and when the AMIMDCA ratio was 21wt.%the propellants could achieve the best propulsion performance.Increasing the incident laser energy not only enhanced the emission spectral intensity but also elevated the plasma temperature and electron density,thereby improving ablation efficiency.Notably,a combination of 100 mJ laser energy and 21wt.%AMIMDCA fuel produced a strong and stable plasma signal.This study contributes to our knowledge of pulsed laser micro-ablation in ADN-based liquid propellants,providing a useful optical diagnostic approach that can help refine the design and enhance the performance of spacecraft propulsion systems.展开更多
Double-pulse LIBS is a promising technique for deep-sea applications.LIBS measurements in shallow water with up to 400 mJ each pulse were done to select laser parameters which promote optimized spectral line emission ...Double-pulse LIBS is a promising technique for deep-sea applications.LIBS measurements in shallow water with up to 400 mJ each pulse were done to select laser parameters which promote optimized spectral line emission from plasma even at elevated pressures,where line broadening until loss of most of the spectral information can occur.Optical emission spectroscopy,using a Czerny-Turner spectrometer,has been applied to investigate the dependence of the emitted radiation on laser parameters and hydrostatic pressure.It has been found,that higher laser pulse energies,especially with short pulse delay as required in high water pressure,can also have an adverse effect on the measured spectrum.展开更多
文摘The efficacy of spacecraft propulsion systems significantly depends on the choice of propellant.This study utilized laser-induced breakdown spectroscopy(LIBS)to investigate the impact of different fuel types,fuel ratios,and laser energies on the plasma parameters of ammonium dinitramide(ADN)-based liquid propellants.Our findings suggest that 1-allyl-3-methylimidazolium dicyanamide(AMIMDCA)as a fuel choice led to higher plasma temperatures compared to methanol(CH_3OH)and hydroxyethyl hydrazine nitrate(HEHN)under the same experimental conditions.Optimization of the fuel ratio proved critical,and when the AMIMDCA ratio was 21wt.%the propellants could achieve the best propulsion performance.Increasing the incident laser energy not only enhanced the emission spectral intensity but also elevated the plasma temperature and electron density,thereby improving ablation efficiency.Notably,a combination of 100 mJ laser energy and 21wt.%AMIMDCA fuel produced a strong and stable plasma signal.This study contributes to our knowledge of pulsed laser micro-ablation in ADN-based liquid propellants,providing a useful optical diagnostic approach that can help refine the design and enhance the performance of spacecraft propulsion systems.
基金funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)–Project No.454848899。
文摘Double-pulse LIBS is a promising technique for deep-sea applications.LIBS measurements in shallow water with up to 400 mJ each pulse were done to select laser parameters which promote optimized spectral line emission from plasma even at elevated pressures,where line broadening until loss of most of the spectral information can occur.Optical emission spectroscopy,using a Czerny-Turner spectrometer,has been applied to investigate the dependence of the emitted radiation on laser parameters and hydrostatic pressure.It has been found,that higher laser pulse energies,especially with short pulse delay as required in high water pressure,can also have an adverse effect on the measured spectrum.