期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High rate and cycling stable Li metal anodes enabled with aluminum-zinc oxides modified copper foam 被引量:3
1
作者 Songtao Lu Zhida Wang +5 位作者 He Yan Rui Wang Ke Lu Yingwen Cheng Wei Qin Xiaohong Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期87-92,共6页
Metallic Li is a promising anode material for high energy density batteries but it suffers from poor stability and formation of unsafe dendrites. Previous studies demonstrated that 3 D metal foams are able to improve ... Metallic Li is a promising anode material for high energy density batteries but it suffers from poor stability and formation of unsafe dendrites. Previous studies demonstrated that 3 D metal foams are able to improve the stability of Li metal but the properties of these foams are inherently limited. Here we report a facile surface modification approach via magnetron sputtering of mixed oxides that effectively modulate the properties of Cu foams for supporting Li metal with remarkable stability. We discovered that hybrid Li anodes with Li metal thermally infused to aluminum-zinc oxides(AZO) coated Cu foams have significantly improved stability and reactivity compared with pristine Li foils and Li infused to unmodified Cu foams. Full cells assembled with a Li Fe PO4 cathode and a hybrid anode maintained low and stable charge-transfer resistance(<50) during 500 cycles in carbonate electrolytes, and exhibited superior rate capability(~100 m Ah g-1 at 20 C) along with better electrochemical reversibility and surface stability. The AZO modified Cu foams had superior mechanical strength and afforded the hybrid anodes with minimized volume change without the formation of dendrites during battery cycling. The rational construction of surface architecture to precisely control Li plating and stripping may have great implications for the practical applications of Li metal batteries. 展开更多
关键词 Composite lianode Metal FOAMS Surface MODIFICATION Limetal BATTERIES 3D current COLLECTOR
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部