Multiwalled carbon nanotubes (MWNTs) were used as the conductive additive in the electrode materials. The electrochemical properties of supercapacitors based on LiNi0.8Co0.2O2 / MWNTs composite and LiNi0.8Co0.2O2/acet...Multiwalled carbon nanotubes (MWNTs) were used as the conductive additive in the electrode materials. The electrochemical properties of supercapacitors based on LiNi0.8Co0.2O2 / MWNTs composite and LiNi0.8Co0.2O2/acetylene black composite and MWNTs in 1.0 mol·L-1 LiClO4 / EC+DEC [V(EC)∶V(DEC)=1∶1] electrolyte were investigated by means of constant charge/discharge current tests, respectively. The experimental results show that the LiNi0.8Co0.2O2 / MWNTs composite has better performance than that of others, and the maximum specific capacitance of the supercapacitor can reach 271.6 F·g-1, while the energy density is up to 339.5 Wh·kg-1. Furthermore, it is remarkable that the performance of MWNTs is better than that of acetylene black as the conductive additive.展开更多
LiCoO2 gradient coated LiNi0.96Co0.04O2 material and iso-structure LiNi0.8Co0.2O2 material (the same molar ratio 8/2 of Ni/Co in the two materials) as cathode for lithium-ion batteries were synthesized with a co-preci...LiCoO2 gradient coated LiNi0.96Co0.04O2 material and iso-structure LiNi0.8Co0.2O2 material (the same molar ratio 8/2 of Ni/Co in the two materials) as cathode for lithium-ion batteries were synthesized with a co-precipitation method. Microstructure of iso-structure LiNi0.8Co0.2O2 were about the same as that of LiNiO2, and the structure of the coated material was much more similar to that of LiCoO2 based on the X-ray diffraction patterns. The cycling voltammetry and galvanostatic cycle tests show that the properties of the coated material were improved significantly. The first specific charge and discharge capacity for the coated material was 249.20 mAh·g-1 and 207.90 mAh·g-1 respectively, and the specific discharge capacity for the 100th cycle was still 186.02 mAh·g-1 with an irreversible loss of only 21.1 mAh·g-1. This showed that the new material had a good lithium intercalation-deintrercalation performance. Meanwhile, the mechanism of the sintering reaction was proposed. During the sintering reaction of the precursor with LiOH, the Li+-ion permeated into the body of precursors because the shape of the precursor particles was not changed basically based on scanning electronic microscopy. So, the layer microstructure of the precursor is important for the layer microstructure of lithium nickel cobalt oxides electrode material.展开更多
NiO-La0.3Ce0.7O2-δ(LDC30) novel anode was investigated for IT-SOFCs(Intermediate Temperature-Solid Oxide Fuel Cells) with LaGaO3-based electrolyte. The results showed that LDC30 has a suitable chemical compatibility ...NiO-La0.3Ce0.7O2-δ(LDC30) novel anode was investigated for IT-SOFCs(Intermediate Temperature-Solid Oxide Fuel Cells) with LaGaO3-based electrolyte. The results showed that LDC30 has a suitable chemical compatibility with NiO and NiO-LDC30 has a good thermal expansion matching with LDC30 interlayer and LSGM(La0.8Sr0.2Ga0.8Mg0.2O3-δ) electrolyte, so NiO-LDC30/LDC30 was considered as a feasible and novel anode system. It was also shown that NiO content plays a key role on polarization performance and morphology of the anode. When the content of NiO was 60%(mass fraction), the polarization loss of anode was the lowest. Next we will optimize the porosity and sintering procedure to modify the microstructure and performance of the anode.展开更多
文摘Multiwalled carbon nanotubes (MWNTs) were used as the conductive additive in the electrode materials. The electrochemical properties of supercapacitors based on LiNi0.8Co0.2O2 / MWNTs composite and LiNi0.8Co0.2O2/acetylene black composite and MWNTs in 1.0 mol·L-1 LiClO4 / EC+DEC [V(EC)∶V(DEC)=1∶1] electrolyte were investigated by means of constant charge/discharge current tests, respectively. The experimental results show that the LiNi0.8Co0.2O2 / MWNTs composite has better performance than that of others, and the maximum specific capacitance of the supercapacitor can reach 271.6 F·g-1, while the energy density is up to 339.5 Wh·kg-1. Furthermore, it is remarkable that the performance of MWNTs is better than that of acetylene black as the conductive additive.
文摘LiCoO2 gradient coated LiNi0.96Co0.04O2 material and iso-structure LiNi0.8Co0.2O2 material (the same molar ratio 8/2 of Ni/Co in the two materials) as cathode for lithium-ion batteries were synthesized with a co-precipitation method. Microstructure of iso-structure LiNi0.8Co0.2O2 were about the same as that of LiNiO2, and the structure of the coated material was much more similar to that of LiCoO2 based on the X-ray diffraction patterns. The cycling voltammetry and galvanostatic cycle tests show that the properties of the coated material were improved significantly. The first specific charge and discharge capacity for the coated material was 249.20 mAh·g-1 and 207.90 mAh·g-1 respectively, and the specific discharge capacity for the 100th cycle was still 186.02 mAh·g-1 with an irreversible loss of only 21.1 mAh·g-1. This showed that the new material had a good lithium intercalation-deintrercalation performance. Meanwhile, the mechanism of the sintering reaction was proposed. During the sintering reaction of the precursor with LiOH, the Li+-ion permeated into the body of precursors because the shape of the precursor particles was not changed basically based on scanning electronic microscopy. So, the layer microstructure of the precursor is important for the layer microstructure of lithium nickel cobalt oxides electrode material.
文摘NiO-La0.3Ce0.7O2-δ(LDC30) novel anode was investigated for IT-SOFCs(Intermediate Temperature-Solid Oxide Fuel Cells) with LaGaO3-based electrolyte. The results showed that LDC30 has a suitable chemical compatibility with NiO and NiO-LDC30 has a good thermal expansion matching with LDC30 interlayer and LSGM(La0.8Sr0.2Ga0.8Mg0.2O3-δ) electrolyte, so NiO-LDC30/LDC30 was considered as a feasible and novel anode system. It was also shown that NiO content plays a key role on polarization performance and morphology of the anode. When the content of NiO was 60%(mass fraction), the polarization loss of anode was the lowest. Next we will optimize the porosity and sintering procedure to modify the microstructure and performance of the anode.